NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  andir GIF version

Theorem andir 838
Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
andir (((φ ψ) χ) ↔ ((φ χ) (ψ χ)))

Proof of Theorem andir
StepHypRef Expression
1 andi 837 . 2 ((χ (φ ψ)) ↔ ((χ φ) (χ ψ)))
2 ancom 437 . 2 (((φ ψ) χ) ↔ (χ (φ ψ)))
3 ancom 437 . . 3 ((φ χ) ↔ (χ φ))
4 ancom 437 . . 3 ((ψ χ) ↔ (χ ψ))
53, 4orbi12i 507 . 2 (((φ χ) (ψ χ)) ↔ ((χ φ) (χ ψ)))
61, 2, 53bitr4i 268 1 (((φ ψ) χ) ↔ ((φ χ) (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  anddi  840  cador  1391  rexun  3444  rabun2  3535  reuun2  3539  elimif  3692  xpundir  4834  coundi  5083  nchoicelem18  6307
  Copyright terms: Public domain W3C validator