| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > andir | GIF version | ||
| Description: Distributive law for conjunction. (Contributed by NM, 12-Aug-1994.) |
| Ref | Expression |
|---|---|
| andir | ⊢ (((φ ∨ ψ) ∧ χ) ↔ ((φ ∧ χ) ∨ (ψ ∧ χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi 837 | . 2 ⊢ ((χ ∧ (φ ∨ ψ)) ↔ ((χ ∧ φ) ∨ (χ ∧ ψ))) | |
| 2 | ancom 437 | . 2 ⊢ (((φ ∨ ψ) ∧ χ) ↔ (χ ∧ (φ ∨ ψ))) | |
| 3 | ancom 437 | . . 3 ⊢ ((φ ∧ χ) ↔ (χ ∧ φ)) | |
| 4 | ancom 437 | . . 3 ⊢ ((ψ ∧ χ) ↔ (χ ∧ ψ)) | |
| 5 | 3, 4 | orbi12i 507 | . 2 ⊢ (((φ ∧ χ) ∨ (ψ ∧ χ)) ↔ ((χ ∧ φ) ∨ (χ ∧ ψ))) |
| 6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (((φ ∨ ψ) ∧ χ) ↔ ((φ ∧ χ) ∨ (ψ ∧ χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: anddi 840 cador 1391 rexun 3444 rabun2 3535 reuun2 3539 elimif 3692 xpundir 4834 coundi 5083 nchoicelem18 6307 |
| Copyright terms: Public domain | W3C validator |