New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (φ ↔ ψ) |
anbi12.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((φ ∧ χ) ↔ (ψ ∧ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | anbi1i 676 | . 2 ⊢ ((φ ∧ χ) ↔ (ψ ∧ χ)) |
3 | anbi12.2 | . . 3 ⊢ (χ ↔ θ) | |
4 | 3 | anbi2i 675 | . 2 ⊢ ((ψ ∧ χ) ↔ (ψ ∧ θ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ ((φ ∧ χ) ↔ (ψ ∧ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi12ci 679 ordi 834 ordir 835 orddi 839 pm5.17 858 xor 861 3anbi123i 1140 an6 1261 nanbi 1294 cadan 1392 nic-axALT 1439 19.43OLD 1606 nfimdOLD 1809 sbbi 2071 sbnf2 2108 eu1 2225 2eu1 2284 2eu4 2287 2eu6 2289 sbabel 2516 neanior 2602 rexeqbii 2646 r19.26m 2750 reean 2778 2ralor 2781 reu5 2825 reu2 3025 reu3 3027 2reu5lem3 3044 eqss 3288 unss 3438 ralunb 3445 ssin 3478 undi 3503 indifdir 3512 undif3 3516 inab 3523 difab 3524 reuss2 3536 reupick 3540 prss 3862 sstp 3871 tpss 3872 prsspw 3879 uniin 3912 intun 3959 intpr 3960 inxpk 4278 sikexlem 4296 dfidk2 4314 ndisjrelk 4324 dfpw2 4328 dfaddc2 4382 dfnnc2 4396 addccom 4407 addcass 4416 nnsucelrlem1 4425 nnsucelrlem2 4426 preaddccan2lem1 4455 ltfinex 4465 ssfin 4471 eqpw1relk 4480 ncfinraiselem2 4481 ncfinraise 4482 ncfinlowerlem1 4483 ncfinlower 4484 eqtfinrelk 4487 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 nnpweq 4524 srelk 4525 sfin112 4530 sfintfinlem1 4532 tfinnnlem1 4534 sfinltfin 4536 spfinex 4538 dfphi2 4570 dfop2lem1 4574 copsex4g 4611 opeqexb 4621 brin 4694 brdif 4695 setconslem1 4732 setconslem2 4733 dfswap2 4742 dfco1 4749 opelxp 4812 elxp3 4832 opbrop 4842 eqrel 4846 eqopr 4848 inopab 4863 inxp 4864 cnvco 4895 dmin 4914 cnvdif 5035 xpnz 5046 xp11 5057 dfco2 5081 dfxp2 5114 dffun4 5122 funun 5147 fun11 5160 fununi 5161 imadif 5172 fnres 5200 fnopabg 5206 fco 5232 fun 5237 fin 5247 f1co 5265 foco 5280 dff1o2 5292 f1oco 5309 tz6.12 5346 fsn 5433 dff1o6 5476 isotr 5496 isomin 5497 dfid4 5504 1stfo 5506 2ndfo 5507 funsi 5521 trtxp 5782 oteltxp 5783 brtxp 5784 dmtxp 5803 txpcofun 5804 fntxp 5805 otsnelsi3 5806 releqmpt 5809 releqmpt2 5810 composeex 5821 disjex 5824 addcfnex 5825 funsex 5829 fnsex 5833 qrpprod 5837 dmpprod 5841 fnpprod 5844 f1opprod 5845 crossex 5851 pw1fnex 5853 pw1fnf1o 5856 fnfullfunlem1 5857 domfnex 5871 ranfnex 5872 clos1ex 5877 dfnnc3 5886 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 ider 5944 ssetpov 5945 eqer 5962 mapexi 6004 mapval2 6019 enex 6032 entr 6039 fundmen 6044 unen 6049 xpen 6056 xpassenlem 6057 xpassen 6058 enpw1lem1 6062 enpw1 6063 enmap2lem4 6067 enmap1lem4 6073 enprmaplem1 6077 enprmaplem4 6080 nenpw1pwlem1 6085 lecex 6116 ovmuc 6131 mucnc 6132 muccl 6133 mucex 6134 muccom 6135 ncdisjeq 6149 tcdi 6165 ovcelem1 6172 ceexlem1 6174 ceex 6175 ce0addcnnul 6180 sbthlem3 6206 sbth 6207 dflec3 6222 nclenc 6223 lenc 6224 tc11 6229 ce2le 6234 tcfnex 6245 muc0or 6253 nnltp1clem1 6262 addccan2nclem2 6265 nmembers1lem1 6269 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 spacvallem1 6282 nchoicelem10 6299 nchoicelem11 6300 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |