![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > anbi12i | GIF version |
Description: Conjoin both sides of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
anbi12.1 | ⊢ (φ ↔ ψ) |
anbi12.2 | ⊢ (χ ↔ θ) |
Ref | Expression |
---|---|
anbi12i | ⊢ ((φ ∧ χ) ↔ (ψ ∧ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anbi12.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | anbi1i 676 | . 2 ⊢ ((φ ∧ χ) ↔ (ψ ∧ χ)) |
3 | anbi12.2 | . . 3 ⊢ (χ ↔ θ) | |
4 | 3 | anbi2i 675 | . 2 ⊢ ((ψ ∧ χ) ↔ (ψ ∧ θ)) |
5 | 2, 4 | bitri 240 | 1 ⊢ ((φ ∧ χ) ↔ (ψ ∧ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anbi12ci 679 ordi 834 ordir 835 orddi 839 pm5.17 858 xor 861 3anbi123i 1140 an6 1261 nanbi 1294 cadan 1392 nic-axALT 1439 19.43OLD 1606 nfimdOLD 1809 sbbi 2071 sbnf2 2108 eu1 2225 2eu1 2284 2eu4 2287 2eu6 2289 sbabel 2515 neanior 2601 rexeqbii 2645 r19.26m 2749 reean 2777 2ralor 2780 reu5 2824 reu2 3024 reu3 3026 2reu5lem3 3043 eqss 3287 unss 3437 ralunb 3444 ssin 3477 undi 3502 indifdir 3511 undif3 3515 inab 3522 difab 3523 reuss2 3535 reupick 3539 prss 3861 sstp 3870 tpss 3871 prsspw 3878 uniin 3911 intun 3958 intpr 3959 inxpk 4277 sikexlem 4295 dfidk2 4313 ndisjrelk 4323 dfpw2 4327 dfaddc2 4381 dfnnc2 4395 addccom 4406 addcass 4415 nnsucelrlem1 4424 nnsucelrlem2 4425 preaddccan2lem1 4454 ltfinex 4464 ssfin 4470 eqpw1relk 4479 ncfinraiselem2 4480 ncfinraise 4481 ncfinlowerlem1 4482 ncfinlower 4483 eqtfinrelk 4486 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 nnpweq 4523 srelk 4524 sfin112 4529 sfintfinlem1 4531 tfinnnlem1 4533 sfinltfin 4535 spfinex 4537 dfphi2 4569 dfop2lem1 4573 copsex4g 4610 opeqexb 4620 brin 4693 brdif 4694 setconslem1 4731 setconslem2 4732 dfswap2 4741 dfco1 4748 opelxp 4811 elxp3 4831 opbrop 4841 eqrel 4845 eqopr 4847 inopab 4862 inxp 4863 cnvco 4894 dmin 4913 cnvdif 5034 xpnz 5045 xp11 5056 dfco2 5080 dfxp2 5113 dffun4 5121 funun 5146 fun11 5159 fununi 5160 imadif 5171 fnres 5199 fnopabg 5205 fco 5231 fun 5236 fin 5246 f1co 5264 foco 5279 dff1o2 5291 f1oco 5308 tz6.12 5345 fsn 5432 dff1o6 5475 isotr 5495 isomin 5496 dfid4 5503 1stfo 5505 2ndfo 5506 funsi 5520 trtxp 5781 oteltxp 5782 brtxp 5783 dmtxp 5802 txpcofun 5803 fntxp 5804 otsnelsi3 5805 releqmpt 5808 releqmpt2 5809 composeex 5820 disjex 5823 addcfnex 5824 funsex 5828 fnsex 5832 qrpprod 5836 dmpprod 5840 fnpprod 5843 f1opprod 5844 crossex 5850 pw1fnex 5852 pw1fnf1o 5855 fnfullfunlem1 5856 domfnex 5870 ranfnex 5871 clos1ex 5876 dfnnc3 5885 transex 5910 refex 5911 antisymex 5912 connexex 5913 foundex 5914 extex 5915 symex 5916 ider 5943 ssetpov 5944 eqer 5961 mapexi 6003 mapval2 6018 enex 6031 entr 6038 fundmen 6043 unen 6048 xpen 6055 xpassenlem 6056 xpassen 6057 enpw1lem1 6061 enpw1 6062 enmap2lem4 6066 enmap1lem4 6072 enprmaplem1 6076 enprmaplem4 6079 nenpw1pwlem1 6084 lecex 6115 ovmuc 6130 mucnc 6131 muccl 6132 mucex 6133 muccom 6134 ncdisjeq 6148 tcdi 6164 ovcelem1 6171 ceexlem1 6173 ceex 6174 ce0addcnnul 6179 sbthlem3 6205 sbth 6206 dflec3 6221 nclenc 6222 lenc 6223 tc11 6228 ce2le 6233 tcfnex 6244 muc0or 6252 nnltp1clem1 6261 addccan2nclem2 6264 nmembers1lem1 6268 nncdiv3lem1 6275 nncdiv3lem2 6276 nnc3n3p1 6278 spacvallem1 6281 nchoicelem10 6298 nchoicelem11 6299 nchoicelem16 6304 fnfreclem1 6317 |
Copyright terms: Public domain | W3C validator |