New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ordi | GIF version |
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.) |
Ref | Expression |
---|---|
ordi | ⊢ ((φ ∨ (ψ ∧ χ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcab 833 | . 2 ⊢ ((¬ φ → (ψ ∧ χ)) ↔ ((¬ φ → ψ) ∧ (¬ φ → χ))) | |
2 | df-or 359 | . 2 ⊢ ((φ ∨ (ψ ∧ χ)) ↔ (¬ φ → (ψ ∧ χ))) | |
3 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
4 | df-or 359 | . . 3 ⊢ ((φ ∨ χ) ↔ (¬ φ → χ)) | |
5 | 3, 4 | anbi12i 678 | . 2 ⊢ (((φ ∨ ψ) ∧ (φ ∨ χ)) ↔ ((¬ φ → ψ) ∧ (¬ φ → χ))) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ ((φ ∨ (ψ ∧ χ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: ordir 835 orddi 839 pm5.63 890 pm4.43 893 cadan 1392 undi 3503 undif4 3608 |
Copyright terms: Public domain | W3C validator |