NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ordi GIF version

Theorem ordi 834
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.)
Assertion
Ref Expression
ordi ((φ (ψ χ)) ↔ ((φ ψ) (φ χ)))

Proof of Theorem ordi
StepHypRef Expression
1 jcab 833 . 2 ((¬ φ → (ψ χ)) ↔ ((¬ φψ) φχ)))
2 df-or 359 . 2 ((φ (ψ χ)) ↔ (¬ φ → (ψ χ)))
3 df-or 359 . . 3 ((φ ψ) ↔ (¬ φψ))
4 df-or 359 . . 3 ((φ χ) ↔ (¬ φχ))
53, 4anbi12i 678 . 2 (((φ ψ) (φ χ)) ↔ ((¬ φψ) φχ)))
61, 2, 53bitr4i 268 1 ((φ (ψ χ)) ↔ ((φ ψ) (φ χ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  ordir  835  orddi  839  pm5.63  890  pm4.43  893  cadan  1392  undi  3503  undif4  3608
  Copyright terms: Public domain W3C validator