| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > ordi | GIF version | ||
| Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| ordi | ⊢ ((φ ∨ (ψ ∧ χ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ χ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jcab 833 | . 2 ⊢ ((¬ φ → (ψ ∧ χ)) ↔ ((¬ φ → ψ) ∧ (¬ φ → χ))) | |
| 2 | df-or 359 | . 2 ⊢ ((φ ∨ (ψ ∧ χ)) ↔ (¬ φ → (ψ ∧ χ))) | |
| 3 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
| 4 | df-or 359 | . . 3 ⊢ ((φ ∨ χ) ↔ (¬ φ → χ)) | |
| 5 | 3, 4 | anbi12i 678 | . 2 ⊢ (((φ ∨ ψ) ∧ (φ ∨ χ)) ↔ ((¬ φ → ψ) ∧ (¬ φ → χ))) | 
| 6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ ((φ ∨ (ψ ∧ χ)) ↔ ((φ ∨ ψ) ∧ (φ ∨ χ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 | 
| This theorem is referenced by: ordir 835 orddi 839 pm5.63 890 pm4.43 893 cadan 1392 undi 3503 undif4 3608 | 
| Copyright terms: Public domain | W3C validator |