New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitr3i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 | ⊢ (ψ ↔ φ) |
bitr3i.2 | ⊢ (ψ ↔ χ) |
Ref | Expression |
---|---|
bitr3i | ⊢ (φ ↔ χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 | . . 3 ⊢ (ψ ↔ φ) | |
2 | 1 | bicomi 193 | . 2 ⊢ (φ ↔ ψ) |
3 | bitr3i.2 | . 2 ⊢ (ψ ↔ χ) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (φ ↔ χ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3bitrri 263 3bitr3i 266 3bitr3ri 267 xchnxbi 299 ianor 474 orordi 516 orordir 517 anandi 801 anandir 802 trunantru 1354 falnanfal 1357 cadan 1392 had0 1403 nic-axALT 1439 sbelx 2124 2mos 2283 2eu6 2289 abeq1i 2462 necon1bbii 2569 r19.41 2764 2ralor 2781 rexcom4a 2880 moeq 3013 euind 3024 2reuswap 3039 2reu5 3045 sbcid 3063 sbcco2 3070 sbc7 3074 sbcie2g 3080 eqsbc1 3086 sbcralt 3119 csbid 3144 cbvralcsf 3199 cbvrabcsf 3202 abss 3336 ssab 3337 difrab 3530 neq0 3561 vdif0 3611 ssunsn2 3866 sspr 3870 sstp 3871 prsspw 3879 disj5 3891 uniintsn 3964 dfpw12 4302 insklem 4305 nnsucelrlem3 4427 ltfinex 4465 dfevenfin2 4513 dfoddfin2 4514 proj1op 4601 proj2op 4602 unopab 4639 brab1 4685 opelssetsn 4761 eliunxp 4822 ralxp 4826 rexxp 4827 opelco 4885 cnvco 4895 dmun 4913 elimapw12 4946 iss 5001 imai 5011 imasn 5019 cotr 5027 cnvsym 5028 intasym 5029 intirr 5030 rninxp 5061 dffun2 5120 dffun3 5121 fin 5247 funimass4 5369 fnressn 5439 fvi 5443 resoprab 5582 ov6g 5601 fmpt2x 5731 braddcfn 5827 fnsex 5833 brpprod 5840 fnfullfunlem1 5857 fvfullfunlem2 5863 clos1induct 5881 transex 5911 connexex 5914 foundex 5915 qsexg 5983 enex 6032 xpassen 6058 enpw1pw 6076 enprmaplem1 6077 ovmuc 6131 ovcelem1 6172 ceex 6175 tcfnex 6245 nmembers1lem1 6269 frecxp 6315 fnfreclem2 6319 fnfreclem3 6320 |
Copyright terms: Public domain | W3C validator |