New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.76 | GIF version |
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.76 | ⊢ (((φ → ψ) ∧ (φ → χ)) ↔ (φ → (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcab 833 | . 2 ⊢ ((φ → (ψ ∧ χ)) ↔ ((φ → ψ) ∧ (φ → χ))) | |
2 | 1 | bicomi 193 | 1 ⊢ (((φ → ψ) ∧ (φ → χ)) ↔ (φ → (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: fun11 5160 |
Copyright terms: Public domain | W3C validator |