NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.76 GIF version

Theorem pm4.76 836
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76 (((φψ) (φχ)) ↔ (φ → (ψ χ)))

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 833 . 2 ((φ → (ψ χ)) ↔ ((φψ) (φχ)))
21bicomi 193 1 (((φψ) (φχ)) ↔ (φ → (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  fun11  5160
  Copyright terms: Public domain W3C validator