Proof of Theorem fun11
Step | Hyp | Ref
| Expression |
1 | | dfbi2 609 |
. . . . . . . 8
⊢ ((x = z ↔
y = w)
↔ ((x = z → y =
w) ∧
(y = w
→ x = z))) |
2 | 1 | imbi2i 303 |
. . . . . . 7
⊢ (((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
((xAy ∧ zAw) →
((x = z
→ y = w) ∧ (y = w →
x = z)))) |
3 | | pm4.76 836 |
. . . . . . 7
⊢ ((((xAy ∧ zAw) → (x =
z → y = w)) ∧ ((xAy ∧ zAw) →
(y = w
→ x = z))) ↔ ((xAy ∧ zAw) → ((x =
z → y = w) ∧ (y = w → x =
z)))) |
4 | | bi2.04 350 |
. . . . . . . 8
⊢ (((xAy ∧ zAw) → (x =
z → y = w)) ↔
(x = z
→ ((xAy ∧ zAw) →
y = w))) |
5 | | bi2.04 350 |
. . . . . . . 8
⊢ (((xAy ∧ zAw) → (y =
w → x = z)) ↔
(y = w
→ ((xAy ∧ zAw) →
x = z))) |
6 | 4, 5 | anbi12i 678 |
. . . . . . 7
⊢ ((((xAy ∧ zAw) → (x =
z → y = w)) ∧ ((xAy ∧ zAw) →
(y = w
→ x = z))) ↔ ((x
= z → ((xAy ∧ zAw) → y =
w)) ∧
(y = w
→ ((xAy ∧ zAw) →
x = z)))) |
7 | 2, 3, 6 | 3bitr2i 264 |
. . . . . 6
⊢ (((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
((x = z
→ ((xAy ∧ zAw) →
y = w))
∧ (y =
w → ((xAy ∧ zAw) → x =
z)))) |
8 | 7 | 2albii 1567 |
. . . . 5
⊢ (∀x∀y((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
∀x∀y((x = z →
((xAy ∧ zAw) →
y = w))
∧ (y =
w → ((xAy ∧ zAw) → x =
z)))) |
9 | | 19.26-2 1594 |
. . . . 5
⊢ (∀x∀y((x = z →
((xAy ∧ zAw) →
y = w))
∧ (y =
w → ((xAy ∧ zAw) → x =
z))) ↔ (∀x∀y(x = z →
((xAy ∧ zAw) →
y = w))
∧ ∀x∀y(y = w →
((xAy ∧ zAw) →
x = z)))) |
10 | | alcom 1737 |
. . . . . . 7
⊢ (∀x∀y(x = z →
((xAy ∧ zAw) →
y = w))
↔ ∀y∀x(x = z → ((xAy ∧ zAw) → y =
w))) |
11 | | nfv 1619 |
. . . . . . . . 9
⊢ Ⅎx((zAy ∧ zAw) →
y = w) |
12 | | breq1 4642 |
. . . . . . . . . . 11
⊢ (x = z →
(xAy ↔
zAy)) |
13 | 12 | anbi1d 685 |
. . . . . . . . . 10
⊢ (x = z →
((xAy ∧ zAw) ↔
(zAy ∧ zAw))) |
14 | 13 | imbi1d 308 |
. . . . . . . . 9
⊢ (x = z →
(((xAy ∧ zAw) →
y = w)
↔ ((zAy ∧ zAw) →
y = w))) |
15 | 11, 14 | equsal 1960 |
. . . . . . . 8
⊢ (∀x(x = z →
((xAy ∧ zAw) →
y = w))
↔ ((zAy ∧ zAw) →
y = w)) |
16 | 15 | albii 1566 |
. . . . . . 7
⊢ (∀y∀x(x = z →
((xAy ∧ zAw) →
y = w))
↔ ∀y((zAy ∧ zAw) →
y = w)) |
17 | 10, 16 | bitri 240 |
. . . . . 6
⊢ (∀x∀y(x = z →
((xAy ∧ zAw) →
y = w))
↔ ∀y((zAy ∧ zAw) →
y = w)) |
18 | | nfv 1619 |
. . . . . . . 8
⊢ Ⅎy((xAw ∧ zAw) →
x = z) |
19 | | breq2 4643 |
. . . . . . . . . 10
⊢ (y = w →
(xAy ↔
xAw)) |
20 | 19 | anbi1d 685 |
. . . . . . . . 9
⊢ (y = w →
((xAy ∧ zAw) ↔
(xAw ∧ zAw))) |
21 | 20 | imbi1d 308 |
. . . . . . . 8
⊢ (y = w →
(((xAy ∧ zAw) →
x = z)
↔ ((xAw ∧ zAw) →
x = z))) |
22 | 18, 21 | equsal 1960 |
. . . . . . 7
⊢ (∀y(y = w →
((xAy ∧ zAw) →
x = z))
↔ ((xAw ∧ zAw) →
x = z)) |
23 | 22 | albii 1566 |
. . . . . 6
⊢ (∀x∀y(y = w →
((xAy ∧ zAw) →
x = z))
↔ ∀x((xAw ∧ zAw) →
x = z)) |
24 | 17, 23 | anbi12i 678 |
. . . . 5
⊢ ((∀x∀y(x = z →
((xAy ∧ zAw) →
y = w))
∧ ∀x∀y(y = w →
((xAy ∧ zAw) →
x = z))) ↔ (∀y((zAy ∧ zAw) → y =
w) ∧ ∀x((xAw ∧ zAw) → x =
z))) |
25 | 8, 9, 24 | 3bitri 262 |
. . . 4
⊢ (∀x∀y((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
(∀y((zAy ∧ zAw) →
y = w)
∧ ∀x((xAw ∧ zAw) → x =
z))) |
26 | 25 | 2albii 1567 |
. . 3
⊢ (∀z∀w∀x∀y((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
∀z∀w(∀y((zAy ∧ zAw) → y =
w) ∧ ∀x((xAw ∧ zAw) → x =
z))) |
27 | | 19.26-2 1594 |
. . 3
⊢ (∀z∀w(∀y((zAy ∧ zAw) → y =
w) ∧ ∀x((xAw ∧ zAw) → x =
z)) ↔ (∀z∀w∀y((zAy ∧ zAw) → y =
w) ∧ ∀z∀w∀x((xAw ∧ zAw) → x =
z))) |
28 | 26, 27 | bitr2i 241 |
. 2
⊢ ((∀z∀w∀y((zAy ∧ zAw) → y =
w) ∧ ∀z∀w∀x((xAw ∧ zAw) → x =
z)) ↔ ∀z∀w∀x∀y((xAy ∧ zAw) → (x =
z ↔ y = w))) |
29 | | dffun2 5119 |
. . . 4
⊢ (Fun A ↔ ∀z∀y∀w((zAy ∧ zAw) → y =
w)) |
30 | | alcom 1737 |
. . . . 5
⊢ (∀y∀w((zAy ∧ zAw) → y =
w) ↔ ∀w∀y((zAy ∧ zAw) → y =
w)) |
31 | 30 | albii 1566 |
. . . 4
⊢ (∀z∀y∀w((zAy ∧ zAw) → y =
w) ↔ ∀z∀w∀y((zAy ∧ zAw) → y =
w)) |
32 | 29, 31 | bitri 240 |
. . 3
⊢ (Fun A ↔ ∀z∀w∀y((zAy ∧ zAw) → y =
w)) |
33 | | brcnv 4892 |
. . . . . . . 8
⊢ (w◡Ax ↔
xAw) |
34 | | brcnv 4892 |
. . . . . . . 8
⊢ (w◡Az ↔
zAw) |
35 | 33, 34 | anbi12i 678 |
. . . . . . 7
⊢ ((w◡Ax ∧ w◡Az) ↔
(xAw ∧ zAw)) |
36 | 35 | imbi1i 315 |
. . . . . 6
⊢ (((w◡Ax ∧ w◡Az) →
x = z)
↔ ((xAw ∧ zAw) →
x = z)) |
37 | 36 | albii 1566 |
. . . . 5
⊢ (∀z((w◡Ax ∧ w◡Az) →
x = z)
↔ ∀z((xAw ∧ zAw) →
x = z)) |
38 | 37 | 2albii 1567 |
. . . 4
⊢ (∀w∀x∀z((w◡Ax ∧ w◡Az) →
x = z)
↔ ∀w∀x∀z((xAw ∧ zAw) →
x = z)) |
39 | | dffun2 5119 |
. . . 4
⊢ (Fun ◡A ↔
∀w∀x∀z((w◡Ax ∧ w◡Az) →
x = z)) |
40 | | alrot3 1738 |
. . . 4
⊢ (∀z∀w∀x((xAw ∧ zAw) → x =
z) ↔ ∀w∀x∀z((xAw ∧ zAw) → x =
z)) |
41 | 38, 39, 40 | 3bitr4i 268 |
. . 3
⊢ (Fun ◡A ↔
∀z∀w∀x((xAw ∧ zAw) → x =
z)) |
42 | 32, 41 | anbi12i 678 |
. 2
⊢ ((Fun A ∧ Fun ◡A)
↔ (∀z∀w∀y((zAy ∧ zAw) →
y = w)
∧ ∀z∀w∀x((xAw ∧ zAw) → x =
z))) |
43 | | alrot4 1739 |
. 2
⊢ (∀x∀y∀z∀w((xAy ∧ zAw) → (x =
z ↔ y = w)) ↔
∀z∀w∀x∀y((xAy ∧ zAw) → (x =
z ↔ y = w))) |
44 | 28, 42, 43 | 3bitr4i 268 |
1
⊢ ((Fun A ∧ Fun ◡A)
↔ ∀x∀y∀z∀w((xAy ∧ zAw) →
(x = z
↔ y = w))) |