New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.15 | GIF version |
Description: Theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) |
Ref | Expression |
---|---|
pm5.15 | ⊢ ((φ ↔ ψ) ∨ (φ ↔ ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xor3 346 | . . 3 ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) | |
2 | 1 | biimpi 186 | . 2 ⊢ (¬ (φ ↔ ψ) → (φ ↔ ¬ ψ)) |
3 | 2 | orri 365 | 1 ⊢ ((φ ↔ ψ) ∨ (φ ↔ ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: sbc2or 3055 |
Copyright terms: Public domain | W3C validator |