NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm5.15 GIF version

Theorem pm5.15 859
Description: Theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 15-Oct-2013.)
Assertion
Ref Expression
pm5.15 ((φψ) (φ ↔ ¬ ψ))

Proof of Theorem pm5.15
StepHypRef Expression
1 xor3 346 . . 3 (¬ (φψ) ↔ (φ ↔ ¬ ψ))
21biimpi 186 . 2 (¬ (φψ) → (φ ↔ ¬ ψ))
32orri 365 1 ((φψ) (φ ↔ ¬ ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  sbc2or  3055
  Copyright terms: Public domain W3C validator