| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.15 | GIF version | ||
| Description: Theorem *5.15 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.15 | ⊢ ((φ ↔ ψ) ∨ (φ ↔ ¬ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xor3 346 | . . 3 ⊢ (¬ (φ ↔ ψ) ↔ (φ ↔ ¬ ψ)) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ (¬ (φ ↔ ψ) → (φ ↔ ¬ ψ)) | 
| 3 | 2 | orri 365 | 1 ⊢ ((φ ↔ ψ) ∨ (φ ↔ ¬ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-or 359 | 
| This theorem is referenced by: sbc2or 3055 | 
| Copyright terms: Public domain | W3C validator |