| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > pm5.16 | GIF version | ||
| Description: Theorem *5.16 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 17-Oct-2013.) | 
| Ref | Expression | 
|---|---|
| pm5.16 | ⊢ ¬ ((φ ↔ ψ) ∧ (φ ↔ ¬ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.18 345 | . . 3 ⊢ ((φ ↔ ψ) ↔ ¬ (φ ↔ ¬ ψ)) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ ((φ ↔ ψ) → ¬ (φ ↔ ¬ ψ)) | 
| 3 | imnan 411 | . 2 ⊢ (((φ ↔ ψ) → ¬ (φ ↔ ¬ ψ)) ↔ ¬ ((φ ↔ ψ) ∧ (φ ↔ ¬ ψ))) | |
| 4 | 2, 3 | mpbi 199 | 1 ⊢ ¬ ((φ ↔ ψ) ∧ (φ ↔ ¬ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |