New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reldisj | GIF version |
Description: Two ways of saying that two classes are disjoint, using the complement of B relative to a universe C. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
reldisj | ⊢ (A ⊆ C → ((A ∩ B) = ∅ ↔ A ⊆ (C ∖ B))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3263 | . . . 4 ⊢ (A ⊆ C ↔ ∀x(x ∈ A → x ∈ C)) | |
2 | pm5.44 877 | . . . . . 6 ⊢ ((x ∈ A → x ∈ C) → ((x ∈ A → ¬ x ∈ B) ↔ (x ∈ A → (x ∈ C ∧ ¬ x ∈ B)))) | |
3 | eldif 3222 | . . . . . . 7 ⊢ (x ∈ (C ∖ B) ↔ (x ∈ C ∧ ¬ x ∈ B)) | |
4 | 3 | imbi2i 303 | . . . . . 6 ⊢ ((x ∈ A → x ∈ (C ∖ B)) ↔ (x ∈ A → (x ∈ C ∧ ¬ x ∈ B))) |
5 | 2, 4 | syl6bbr 254 | . . . . 5 ⊢ ((x ∈ A → x ∈ C) → ((x ∈ A → ¬ x ∈ B) ↔ (x ∈ A → x ∈ (C ∖ B)))) |
6 | 5 | sps 1754 | . . . 4 ⊢ (∀x(x ∈ A → x ∈ C) → ((x ∈ A → ¬ x ∈ B) ↔ (x ∈ A → x ∈ (C ∖ B)))) |
7 | 1, 6 | sylbi 187 | . . 3 ⊢ (A ⊆ C → ((x ∈ A → ¬ x ∈ B) ↔ (x ∈ A → x ∈ (C ∖ B)))) |
8 | 7 | albidv 1625 | . 2 ⊢ (A ⊆ C → (∀x(x ∈ A → ¬ x ∈ B) ↔ ∀x(x ∈ A → x ∈ (C ∖ B)))) |
9 | disj1 3594 | . 2 ⊢ ((A ∩ B) = ∅ ↔ ∀x(x ∈ A → ¬ x ∈ B)) | |
10 | dfss2 3263 | . 2 ⊢ (A ⊆ (C ∖ B) ↔ ∀x(x ∈ A → x ∈ (C ∖ B))) | |
11 | 8, 9, 10 | 3bitr4g 279 | 1 ⊢ (A ⊆ C → ((A ∩ B) = ∅ ↔ A ⊆ (C ∖ B))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∖ cdif 3207 ∩ cin 3209 ⊆ wss 3258 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 |
This theorem is referenced by: disj2 3599 |
Copyright terms: Public domain | W3C validator |