NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  adantrd GIF version

Theorem adantrd 454
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.)
Hypothesis
Ref Expression
adantrd.1 (φ → (ψχ))
Assertion
Ref Expression
adantrd (φ → ((ψ θ) → χ))

Proof of Theorem adantrd
StepHypRef Expression
1 simpl 443 . 2 ((ψ θ) → ψ)
2 adantrd.1 . 2 (φ → (ψχ))
31, 2syl5 28 1 (φ → ((ψ θ) → χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  syldan  456  jaoa  496  prlem1  928  cad0  1400  equveli  1988  2eu3  2286  unineq  3506  tfinltfinlem1  4501  sfintfin  4533  vfinncvntnn  4549  fvun1  5380  fnasrn  5418  fconst5  5456  fconstfv  5457  enadjlem1  6060  leltctr  6213  addcdi  6251  nmembers1lem3  6271  nchoicelem12  6301
  Copyright terms: Public domain W3C validator