New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantrd | GIF version |
Description: Deduction adding a conjunct to the right of an antecedent. (Contributed by NM, 4-May-1994.) |
Ref | Expression |
---|---|
adantrd.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
adantrd | ⊢ (φ → ((ψ ∧ θ) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((ψ ∧ θ) → ψ) | |
2 | adantrd.1 | . 2 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | syl5 28 | 1 ⊢ (φ → ((ψ ∧ θ) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: syldan 456 jaoa 496 prlem1 928 cad0 1400 equveli 1988 2eu3 2286 unineq 3506 tfinltfinlem1 4501 sfintfin 4533 vfinncvntnn 4549 fvun1 5380 fnasrn 5418 fconst5 5456 fconstfv 5457 enadjlem1 6060 leltctr 6213 addcdi 6251 nmembers1lem3 6271 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |