New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.21 | GIF version |
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.) |
Ref | Expression |
---|---|
r19.21.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
r19.21 | ⊢ (∀x ∈ A (φ → ψ) ↔ (φ → ∀x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21.1 | . 2 ⊢ Ⅎxφ | |
2 | r19.21t 2700 | . 2 ⊢ (Ⅎxφ → (∀x ∈ A (φ → ψ) ↔ (φ → ∀x ∈ A ψ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀x ∈ A (φ → ψ) ↔ (φ → ∀x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 Ⅎwnf 1544 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: r19.21v 2702 |
Copyright terms: Public domain | W3C validator |