New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.21t | GIF version |
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.) |
Ref | Expression |
---|---|
r19.21t | ⊢ (Ⅎxφ → (∀x ∈ A (φ → ψ) ↔ (φ → ∀x ∈ A ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 350 | . . . 4 ⊢ ((x ∈ A → (φ → ψ)) ↔ (φ → (x ∈ A → ψ))) | |
2 | 1 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → (φ → ψ)) ↔ ∀x(φ → (x ∈ A → ψ))) |
3 | 19.21t 1795 | . . 3 ⊢ (Ⅎxφ → (∀x(φ → (x ∈ A → ψ)) ↔ (φ → ∀x(x ∈ A → ψ)))) | |
4 | 2, 3 | syl5bb 248 | . 2 ⊢ (Ⅎxφ → (∀x(x ∈ A → (φ → ψ)) ↔ (φ → ∀x(x ∈ A → ψ)))) |
5 | df-ral 2620 | . 2 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x(x ∈ A → (φ → ψ))) | |
6 | df-ral 2620 | . . 3 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
7 | 6 | imbi2i 303 | . 2 ⊢ ((φ → ∀x ∈ A ψ) ↔ (φ → ∀x(x ∈ A → ψ))) |
8 | 4, 5, 7 | 3bitr4g 279 | 1 ⊢ (Ⅎxφ → (∀x ∈ A (φ → ψ) ↔ (φ → ∀x ∈ A ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: r19.21 2701 |
Copyright terms: Public domain | W3C validator |