NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.21v GIF version

Theorem r19.21v 2702
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v (x A (φψ) ↔ (φx A ψ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1619 . 2 xφ
21r19.21 2701 1 (x A (φψ) ↔ (φx A ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  r19.32v  2758  rmo4  3030  2reu5lem3  3044  rmo3  3134
  Copyright terms: Public domain W3C validator