NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ral2imi GIF version

Theorem ral2imi 2691
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
Hypothesis
Ref Expression
ral2imi.1 (φ → (ψχ))
Assertion
Ref Expression
ral2imi (x A φ → (x A ψx A χ))

Proof of Theorem ral2imi
StepHypRef Expression
1 ral2imi.1 . . 3 (φ → (ψχ))
21ralimi 2690 . 2 (x A φx A (ψχ))
3 ralim 2686 . 2 (x A (ψχ) → (x A ψx A χ))
42, 3syl 15 1 (x A φ → (x A ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-ral 2620
This theorem is referenced by:  rexim  2719  r19.26  2747
  Copyright terms: Public domain W3C validator