New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ral2imi | GIF version |
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.) |
Ref | Expression |
---|---|
ral2imi.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
ral2imi | ⊢ (∀x ∈ A φ → (∀x ∈ A ψ → ∀x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ral2imi.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
2 | 1 | ralimi 2690 | . 2 ⊢ (∀x ∈ A φ → ∀x ∈ A (ψ → χ)) |
3 | ralim 2686 | . 2 ⊢ (∀x ∈ A (ψ → χ) → (∀x ∈ A ψ → ∀x ∈ A χ)) | |
4 | 2, 3 | syl 15 | 1 ⊢ (∀x ∈ A φ → (∀x ∈ A ψ → ∀x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: rexim 2719 r19.26 2747 |
Copyright terms: Public domain | W3C validator |