New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.26 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . . 4 ⊢ ((φ ∧ ψ) → φ) | |
2 | 1 | ralimi 2689 | . . 3 ⊢ (∀x ∈ A (φ ∧ ψ) → ∀x ∈ A φ) |
3 | simpr 447 | . . . 4 ⊢ ((φ ∧ ψ) → ψ) | |
4 | 3 | ralimi 2689 | . . 3 ⊢ (∀x ∈ A (φ ∧ ψ) → ∀x ∈ A ψ) |
5 | 2, 4 | jca 518 | . 2 ⊢ (∀x ∈ A (φ ∧ ψ) → (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
6 | pm3.2 434 | . . . 4 ⊢ (φ → (ψ → (φ ∧ ψ))) | |
7 | 6 | ral2imi 2690 | . . 3 ⊢ (∀x ∈ A φ → (∀x ∈ A ψ → ∀x ∈ A (φ ∧ ψ))) |
8 | 7 | imp 418 | . 2 ⊢ ((∀x ∈ A φ ∧ ∀x ∈ A ψ) → ∀x ∈ A (φ ∧ ψ)) |
9 | 5, 8 | impbii 180 | 1 ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ral 2619 |
This theorem is referenced by: r19.26-2 2747 r19.26-3 2748 ralbiim 2751 r19.27av 2752 r19.35 2758 reu8 3032 ssrab 3344 r19.28z 3642 r19.28zv 3645 r19.27z 3648 r19.27zv 3649 2ralunsn 3880 iuneq2 3985 fncnv 5158 fnres 5199 fnopabg 5205 eqfnfv3 5394 |
Copyright terms: Public domain | W3C validator |