New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.26 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
r19.26 | ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . . 4 ⊢ ((φ ∧ ψ) → φ) | |
2 | 1 | ralimi 2690 | . . 3 ⊢ (∀x ∈ A (φ ∧ ψ) → ∀x ∈ A φ) |
3 | simpr 447 | . . . 4 ⊢ ((φ ∧ ψ) → ψ) | |
4 | 3 | ralimi 2690 | . . 3 ⊢ (∀x ∈ A (φ ∧ ψ) → ∀x ∈ A ψ) |
5 | 2, 4 | jca 518 | . 2 ⊢ (∀x ∈ A (φ ∧ ψ) → (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
6 | pm3.2 434 | . . . 4 ⊢ (φ → (ψ → (φ ∧ ψ))) | |
7 | 6 | ral2imi 2691 | . . 3 ⊢ (∀x ∈ A φ → (∀x ∈ A ψ → ∀x ∈ A (φ ∧ ψ))) |
8 | 7 | imp 418 | . 2 ⊢ ((∀x ∈ A φ ∧ ∀x ∈ A ψ) → ∀x ∈ A (φ ∧ ψ)) |
9 | 5, 8 | impbii 180 | 1 ⊢ (∀x ∈ A (φ ∧ ψ) ↔ (∀x ∈ A φ ∧ ∀x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ral 2620 |
This theorem is referenced by: r19.26-2 2748 r19.26-3 2749 ralbiim 2752 r19.27av 2753 r19.35 2759 reu8 3033 ssrab 3345 r19.28z 3643 r19.28zv 3646 r19.27z 3649 r19.27zv 3650 2ralunsn 3881 iuneq2 3986 fncnv 5159 fnres 5200 fnopabg 5206 eqfnfv3 5395 |
Copyright terms: Public domain | W3C validator |