NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.26 GIF version

Theorem r19.26 2747
Description: Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.26 (x A (φ ψ) ↔ (x A φ x A ψ))

Proof of Theorem r19.26
StepHypRef Expression
1 simpl 443 . . . 4 ((φ ψ) → φ)
21ralimi 2690 . . 3 (x A (φ ψ) → x A φ)
3 simpr 447 . . . 4 ((φ ψ) → ψ)
43ralimi 2690 . . 3 (x A (φ ψ) → x A ψ)
52, 4jca 518 . 2 (x A (φ ψ) → (x A φ x A ψ))
6 pm3.2 434 . . . 4 (φ → (ψ → (φ ψ)))
76ral2imi 2691 . . 3 (x A φ → (x A ψx A (φ ψ)))
87imp 418 . 2 ((x A φ x A ψ) → x A (φ ψ))
95, 8impbii 180 1 (x A (φ ψ) ↔ (x A φ x A ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ral 2620
This theorem is referenced by:  r19.26-2  2748  r19.26-3  2749  ralbiim  2752  r19.27av  2753  r19.35  2759  reu8  3033  ssrab  3345  r19.28z  3643  r19.28zv  3646  r19.27z  3649  r19.27zv  3650  2ralunsn  3881  iuneq2  3986  fncnv  5159  fnres  5200  fnopabg  5206  eqfnfv3  5395
  Copyright terms: Public domain W3C validator