NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexim GIF version

Theorem rexim 2719
Description: Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rexim (x A (φψ) → (x A φx A ψ))

Proof of Theorem rexim
StepHypRef Expression
1 con3 126 . . . 4 ((φψ) → (¬ ψ → ¬ φ))
21ral2imi 2691 . . 3 (x A (φψ) → (x A ¬ ψx A ¬ φ))
32con3d 125 . 2 (x A (φψ) → (¬ x A ¬ φ → ¬ x A ¬ ψ))
4 dfrex2 2628 . 2 (x A φ ↔ ¬ x A ¬ φ)
5 dfrex2 2628 . 2 (x A ψ ↔ ¬ x A ¬ ψ)
63, 4, 53imtr4g 261 1 (x A (φψ) → (x A φx A ψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  reximia  2720  reximdai  2723  r19.29  2755  reupick2  3542  ss2iun  3985
  Copyright terms: Public domain W3C validator