NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  re2luk3 GIF version

Theorem re2luk3 1532
Description: luk-3 1422 derived from Russell-Bernays'.

This theorem, along with re1axmp 1529, re2luk1 1530, and re2luk2 1531 shows that rb-ax1 1517, rb-ax2 1518, rb-ax3 1519, and rb-ax4 1520, along with anmp 1516, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
re2luk3 (φ → (¬ φψ))

Proof of Theorem re2luk3
StepHypRef Expression
1 rb-imdf 1515 . . . 4 ¬ (¬ (¬ (¬ φψ) (¬ ¬ φ ψ)) ¬ (¬ (¬ ¬ φ ψ) φψ)))
21rblem7 1528 . . 3 (¬ (¬ ¬ φ ψ) φψ))
3 rb-ax4 1520 . . . . . 6 (¬ (¬ φ ¬ φ) ¬ φ)
4 rb-ax3 1519 . . . . . 6 (¬ ¬ φ φ ¬ φ))
53, 4rbsyl 1521 . . . . 5 (¬ ¬ φ ¬ φ)
6 rb-ax2 1518 . . . . 5 (¬ (¬ ¬ φ ¬ φ) φ ¬ ¬ φ))
75, 6anmp 1516 . . . 4 φ ¬ ¬ φ)
8 rblem2 1523 . . . 4 (¬ (¬ φ ¬ ¬ φ) φ (¬ ¬ φ ψ)))
97, 8anmp 1516 . . 3 φ (¬ ¬ φ ψ))
102, 9rbsyl 1521 . 2 φ φψ))
11 rb-imdf 1515 . . 3 ¬ (¬ (¬ (φ → (¬ φψ)) φ φψ))) ¬ (¬ (¬ φ φψ)) (φ → (¬ φψ))))
1211rblem7 1528 . 2 (¬ (¬ φ φψ)) (φ → (¬ φψ)))
1310, 12anmp 1516 1 (φ → (¬ φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator