| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > re2luk3 | GIF version | ||
| Description: luk-3 1422 derived from Russell-Bernays'.
This theorem, along with re1axmp 1529, re2luk1 1530, and re2luk2 1531 shows that rb-ax1 1517, rb-ax2 1518, rb-ax3 1519, and rb-ax4 1520, along with anmp 1516, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| re2luk3 | ⊢ (φ → (¬ φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rb-imdf 1515 | . . . 4 ⊢ ¬ (¬ (¬ (¬ φ → ψ) ∨ (¬ ¬ φ ∨ ψ)) ∨ ¬ (¬ (¬ ¬ φ ∨ ψ) ∨ (¬ φ → ψ))) | |
| 2 | 1 | rblem7 1528 | . . 3 ⊢ (¬ (¬ ¬ φ ∨ ψ) ∨ (¬ φ → ψ)) |
| 3 | rb-ax4 1520 | . . . . . 6 ⊢ (¬ (¬ φ ∨ ¬ φ) ∨ ¬ φ) | |
| 4 | rb-ax3 1519 | . . . . . 6 ⊢ (¬ ¬ φ ∨ (¬ φ ∨ ¬ φ)) | |
| 5 | 3, 4 | rbsyl 1521 | . . . . 5 ⊢ (¬ ¬ φ ∨ ¬ φ) |
| 6 | rb-ax2 1518 | . . . . 5 ⊢ (¬ (¬ ¬ φ ∨ ¬ φ) ∨ (¬ φ ∨ ¬ ¬ φ)) | |
| 7 | 5, 6 | anmp 1516 | . . . 4 ⊢ (¬ φ ∨ ¬ ¬ φ) |
| 8 | rblem2 1523 | . . . 4 ⊢ (¬ (¬ φ ∨ ¬ ¬ φ) ∨ (¬ φ ∨ (¬ ¬ φ ∨ ψ))) | |
| 9 | 7, 8 | anmp 1516 | . . 3 ⊢ (¬ φ ∨ (¬ ¬ φ ∨ ψ)) |
| 10 | 2, 9 | rbsyl 1521 | . 2 ⊢ (¬ φ ∨ (¬ φ → ψ)) |
| 11 | rb-imdf 1515 | . . 3 ⊢ ¬ (¬ (¬ (φ → (¬ φ → ψ)) ∨ (¬ φ ∨ (¬ φ → ψ))) ∨ ¬ (¬ (¬ φ ∨ (¬ φ → ψ)) ∨ (φ → (¬ φ → ψ)))) | |
| 12 | 11 | rblem7 1528 | . 2 ⊢ (¬ (¬ φ ∨ (¬ φ → ψ)) ∨ (φ → (¬ φ → ψ))) |
| 13 | 10, 12 | anmp 1516 | 1 ⊢ (φ → (¬ φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |