NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rblem1 GIF version

Theorem rblem1 1522
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rblem1.1 φ ψ)
rblem1.2 χ θ)
Assertion
Ref Expression
rblem1 (¬ (φ χ) (ψ θ))

Proof of Theorem rblem1
StepHypRef Expression
1 rblem1.2 . . 3 χ θ)
2 rb-ax1 1517 . . 3 (¬ (¬ χ θ) (¬ (ψ χ) (ψ θ)))
31, 2anmp 1516 . 2 (¬ (ψ χ) (ψ θ))
4 rb-ax2 1518 . . 3 (¬ (χ ψ) (ψ χ))
5 rblem1.1 . . . . 5 φ ψ)
6 rb-ax1 1517 . . . . 5 (¬ (¬ φ ψ) (¬ (χ φ) (χ ψ)))
75, 6anmp 1516 . . . 4 (¬ (χ φ) (χ ψ))
8 rb-ax2 1518 . . . 4 (¬ (φ χ) (χ φ))
97, 8rbsyl 1521 . . 3 (¬ (φ χ) (χ ψ))
104, 9rbsyl 1521 . 2 (¬ (φ χ) (ψ χ))
113, 10rbsyl 1521 1 (¬ (φ χ) (ψ θ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  rblem4  1525  rblem5  1526  re2luk1  1530  re2luk2  1531
  Copyright terms: Public domain W3C validator