New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rblem1 | GIF version |
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rblem1.1 | ⊢ (¬ φ ∨ ψ) |
rblem1.2 | ⊢ (¬ χ ∨ θ) |
Ref | Expression |
---|---|
rblem1 | ⊢ (¬ (φ ∨ χ) ∨ (ψ ∨ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rblem1.2 | . . 3 ⊢ (¬ χ ∨ θ) | |
2 | rb-ax1 1517 | . . 3 ⊢ (¬ (¬ χ ∨ θ) ∨ (¬ (ψ ∨ χ) ∨ (ψ ∨ θ))) | |
3 | 1, 2 | anmp 1516 | . 2 ⊢ (¬ (ψ ∨ χ) ∨ (ψ ∨ θ)) |
4 | rb-ax2 1518 | . . 3 ⊢ (¬ (χ ∨ ψ) ∨ (ψ ∨ χ)) | |
5 | rblem1.1 | . . . . 5 ⊢ (¬ φ ∨ ψ) | |
6 | rb-ax1 1517 | . . . . 5 ⊢ (¬ (¬ φ ∨ ψ) ∨ (¬ (χ ∨ φ) ∨ (χ ∨ ψ))) | |
7 | 5, 6 | anmp 1516 | . . . 4 ⊢ (¬ (χ ∨ φ) ∨ (χ ∨ ψ)) |
8 | rb-ax2 1518 | . . . 4 ⊢ (¬ (φ ∨ χ) ∨ (χ ∨ φ)) | |
9 | 7, 8 | rbsyl 1521 | . . 3 ⊢ (¬ (φ ∨ χ) ∨ (χ ∨ ψ)) |
10 | 4, 9 | rbsyl 1521 | . 2 ⊢ (¬ (φ ∨ χ) ∨ (ψ ∨ χ)) |
11 | 3, 10 | rbsyl 1521 | 1 ⊢ (¬ (φ ∨ χ) ∨ (ψ ∨ θ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: rblem4 1525 rblem5 1526 re2luk1 1530 re2luk2 1531 |
Copyright terms: Public domain | W3C validator |