New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rblem2 | GIF version |
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rblem2 | ⊢ (¬ (χ ∨ φ) ∨ (χ ∨ (φ ∨ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rb-ax2 1518 | . . 3 ⊢ (¬ (ψ ∨ φ) ∨ (φ ∨ ψ)) | |
2 | rb-ax3 1519 | . . 3 ⊢ (¬ φ ∨ (ψ ∨ φ)) | |
3 | 1, 2 | rbsyl 1521 | . 2 ⊢ (¬ φ ∨ (φ ∨ ψ)) |
4 | rb-ax1 1517 | . 2 ⊢ (¬ (¬ φ ∨ (φ ∨ ψ)) ∨ (¬ (χ ∨ φ) ∨ (χ ∨ (φ ∨ ψ)))) | |
5 | 3, 4 | anmp 1516 | 1 ⊢ (¬ (χ ∨ φ) ∨ (χ ∨ (φ ∨ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: rblem3 1524 rblem4 1525 re2luk3 1532 |
Copyright terms: Public domain | W3C validator |