NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rblem2 GIF version

Theorem rblem2 1523
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rblem2 (¬ (χ φ) (χ (φ ψ)))

Proof of Theorem rblem2
StepHypRef Expression
1 rb-ax2 1518 . . 3 (¬ (ψ φ) (φ ψ))
2 rb-ax3 1519 . . 3 φ (ψ φ))
31, 2rbsyl 1521 . 2 φ (φ ψ))
4 rb-ax1 1517 . 2 (¬ (¬ φ (φ ψ)) (¬ (χ φ) (χ (φ ψ))))
53, 4anmp 1516 1 (¬ (χ φ) (χ (φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  rblem3  1524  rblem4  1525  re2luk3  1532
  Copyright terms: Public domain W3C validator