NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rblem4 GIF version

Theorem rblem4 1525
Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rblem4.1 φ θ)
rblem4.2 ψ τ)
rblem4.3 χ η)
Assertion
Ref Expression
rblem4 (¬ ((φ ψ) χ) ((η τ) θ))

Proof of Theorem rblem4
StepHypRef Expression
1 rblem4.3 . . . 4 χ η)
2 rblem4.2 . . . 4 ψ τ)
31, 2rblem1 1522 . . 3 (¬ (χ ψ) (η τ))
4 rblem4.1 . . 3 φ θ)
53, 4rblem1 1522 . 2 (¬ ((χ ψ) φ) ((η τ) θ))
6 rb-ax2 1518 . . . 4 (¬ (φ (χ ψ)) ((χ ψ) φ))
7 rb-ax2 1518 . . . . . 6 (¬ (ψ χ) (χ ψ))
8 rb-ax1 1517 . . . . . 6 (¬ (¬ (ψ χ) (χ ψ)) (¬ (φ (ψ χ)) (φ (χ ψ))))
97, 8anmp 1516 . . . . 5 (¬ (φ (ψ χ)) (φ (χ ψ)))
10 rb-ax2 1518 . . . . 5 (¬ ((ψ χ) φ) (φ (ψ χ)))
119, 10rbsyl 1521 . . . 4 (¬ ((ψ χ) φ) (φ (χ ψ)))
126, 11rbsyl 1521 . . 3 (¬ ((ψ χ) φ) ((χ ψ) φ))
13 rb-ax4 1520 . . . 4 (¬ (((ψ χ) φ) ((ψ χ) φ)) ((ψ χ) φ))
14 rb-ax2 1518 . . . . . 6 (¬ (φ (ψ χ)) ((ψ χ) φ))
15 rblem2 1523 . . . . . 6 (¬ (φ ψ) (φ (ψ χ)))
1614, 15rbsyl 1521 . . . . 5 (¬ (φ ψ) ((ψ χ) φ))
17 rb-ax3 1519 . . . . . 6 χ (ψ χ))
18 rblem2 1523 . . . . . 6 (¬ (¬ χ (ψ χ)) χ ((ψ χ) φ)))
1917, 18anmp 1516 . . . . 5 χ ((ψ χ) φ))
2016, 19rblem1 1522 . . . 4 (¬ ((φ ψ) χ) (((ψ χ) φ) ((ψ χ) φ)))
2113, 20rbsyl 1521 . . 3 (¬ ((φ ψ) χ) ((ψ χ) φ))
2212, 21rbsyl 1521 . 2 (¬ ((φ ψ) χ) ((χ ψ) φ))
235, 22rbsyl 1521 1 (¬ ((φ ψ) χ) ((η τ) θ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  re2luk1  1530
  Copyright terms: Public domain W3C validator