| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rbsyl | GIF version | ||
| Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rbsyl.1 | ⊢ (¬ ψ ∨ χ) |
| rbsyl.2 | ⊢ (φ ∨ ψ) |
| Ref | Expression |
|---|---|
| rbsyl | ⊢ (φ ∨ χ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rbsyl.2 | . 2 ⊢ (φ ∨ ψ) | |
| 2 | rbsyl.1 | . . 3 ⊢ (¬ ψ ∨ χ) | |
| 3 | rb-ax1 1517 | . . 3 ⊢ (¬ (¬ ψ ∨ χ) ∨ (¬ (φ ∨ ψ) ∨ (φ ∨ χ))) | |
| 4 | 2, 3 | anmp 1516 | . 2 ⊢ (¬ (φ ∨ ψ) ∨ (φ ∨ χ)) |
| 5 | 1, 4 | anmp 1516 | 1 ⊢ (φ ∨ χ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
| This theorem is referenced by: rblem1 1522 rblem2 1523 rblem3 1524 rblem4 1525 rblem5 1526 rblem6 1527 re2luk1 1530 re2luk2 1531 re2luk3 1532 |
| Copyright terms: Public domain | W3C validator |