| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > reximi2 | GIF version | ||
| Description: Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.) | 
| Ref | Expression | 
|---|---|
| reximi2.1 | ⊢ ((x ∈ A ∧ φ) → (x ∈ B ∧ ψ)) | 
| Ref | Expression | 
|---|---|
| reximi2 | ⊢ (∃x ∈ A φ → ∃x ∈ B ψ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximi2.1 | . . 3 ⊢ ((x ∈ A ∧ φ) → (x ∈ B ∧ ψ)) | |
| 2 | 1 | eximi 1576 | . 2 ⊢ (∃x(x ∈ A ∧ φ) → ∃x(x ∈ B ∧ ψ)) | 
| 3 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 4 | df-rex 2621 | . 2 ⊢ (∃x ∈ B ψ ↔ ∃x(x ∈ B ∧ ψ)) | |
| 5 | 2, 3, 4 | 3imtr4i 257 | 1 ⊢ (∃x ∈ A φ → ∃x ∈ B ψ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 | 
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-rex 2621 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |