NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reximi GIF version

Theorem reximi 2721
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
Hypothesis
Ref Expression
reximi.1 (φψ)
Assertion
Ref Expression
reximi (x A φx A ψ)

Proof of Theorem reximi
StepHypRef Expression
1 reximi.1 . . 3 (φψ)
21a1i 10 . 2 (x A → (φψ))
32reximia 2719 1 (x A φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wrex 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2619  df-rex 2620
This theorem is referenced by:  r19.40  2762  reu3  3026  2reu5  3044  ssiun  4008  iinss  4017  lefinlteq  4463  sucevenodd  4510  sfinltfin  4535  vfinspsslem1  4550  pw1fin  6169  addlec  6208  nncdiv3  6277
  Copyright terms: Public domain W3C validator