NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reximia GIF version

Theorem reximia 2720
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
reximia.1 (x A → (φψ))
Assertion
Ref Expression
reximia (x A φx A ψ)

Proof of Theorem reximia
StepHypRef Expression
1 rexim 2719 . 2 (x A (φψ) → (x A φx A ψ))
2 reximia.1 . 2 (x A → (φψ))
31, 2mprg 2684 1 (x A φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620  df-rex 2621
This theorem is referenced by:  reximi  2722
  Copyright terms: Public domain W3C validator