New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rgenw | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rgenw.1 | ⊢ φ |
Ref | Expression |
---|---|
rgenw | ⊢ ∀x ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgenw.1 | . . 3 ⊢ φ | |
2 | 1 | a1i 10 | . 2 ⊢ (x ∈ A → φ) |
3 | 2 | rgen 2680 | 1 ⊢ ∀x ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: rgen2w 2683 reuun1 3538 riinrab 4042 evenodddisj 4517 vfinspnn 4542 mpt2eq12 5663 fnmpti 5691 clos10 5888 fnpm 6009 frecxp 6315 |
Copyright terms: Public domain | W3C validator |