NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  frecxp GIF version

Theorem frecxp 6315
Description: Subset relationship for the finite recursive function generator. (Contributed by Scott Fenton, 30-Jul-2019.)
Hypotheses
Ref Expression
frecxp.1 F = FRec (G, I)
frecxp.2 G V
Assertion
Ref Expression
frecxp F ( Nn × (ran G ∪ {I}))

Proof of Theorem frecxp
Dummy variables x y z a b c d i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecxp.1 . 2 F = FRec (G, I)
2 eqid 2353 . . . . . 6 G = G
3 freceq12 6312 . . . . . 6 ((G = G i = I) → FRec (G, i) = FRec (G, I))
42, 3mpan 651 . . . . 5 (i = IFRec (G, i) = FRec (G, I))
5 sneq 3745 . . . . . . 7 (i = I → {i} = {I})
65uneq2d 3419 . . . . . 6 (i = I → (ran G ∪ {i}) = (ran G ∪ {I}))
76xpeq2d 4809 . . . . 5 (i = I → ( Nn × (ran G ∪ {i})) = ( Nn × (ran G ∪ {I})))
84, 7sseq12d 3301 . . . 4 (i = I → ( FRec (G, i) ( Nn × (ran G ∪ {i})) ↔ FRec (G, I) ( Nn × (ran G ∪ {I}))))
9 nncex 4397 . . . . . 6 Nn V
10 frecxp.2 . . . . . . . 8 G V
1110rnex 5108 . . . . . . 7 ran G V
12 snex 4112 . . . . . . 7 {i} V
1311, 12unex 4107 . . . . . 6 (ran G ∪ {i}) V
149, 13xpex 5116 . . . . 5 ( Nn × (ran G ∪ {i})) V
15 peano1 4403 . . . . . 6 0c Nn
16 vex 2863 . . . . . . . 8 i V
1716snid 3761 . . . . . . 7 i {i}
18 elun2 3432 . . . . . . 7 (i {i} → i (ran G ∪ {i}))
1917, 18ax-mp 5 . . . . . 6 i (ran G ∪ {i})
20 0cex 4393 . . . . . . . . 9 0c V
2120, 16opex 4589 . . . . . . . 8 0c, i V
2221snss 3839 . . . . . . 7 (0c, i ( Nn × (ran G ∪ {i})) ↔ {0c, i} ( Nn × (ran G ∪ {i})))
23 opelxp 4812 . . . . . . 7 (0c, i ( Nn × (ran G ∪ {i})) ↔ (0c Nn i (ran G ∪ {i})))
2422, 23bitr3i 242 . . . . . 6 ({0c, i} ( Nn × (ran G ∪ {i})) ↔ (0c Nn i (ran G ∪ {i})))
2515, 19, 24mpbir2an 886 . . . . 5 {0c, i} ( Nn × (ran G ∪ {i}))
26 brpprod 5840 . . . . . . . . 9 (y PProd ((x V (x +c 1c)), G)zabcd(y = a, b z = c, d (a(x V (x +c 1c))c bGd)))
27 vex 2863 . . . . . . . . . . . . . . . 16 a V
28 vex 2863 . . . . . . . . . . . . . . . 16 c V
2927, 28brcsuc 6261 . . . . . . . . . . . . . . 15 (a(x V (x +c 1c))cc = (a +c 1c))
30 brelrn 4961 . . . . . . . . . . . . . . . . . . . 20 (bGdd ran G)
31 elun1 3431 . . . . . . . . . . . . . . . . . . . 20 (d ran Gd (ran G ∪ {i}))
3230, 31syl 15 . . . . . . . . . . . . . . . . . . 19 (bGdd (ran G ∪ {i}))
33 peano2 4404 . . . . . . . . . . . . . . . . . . 19 (a Nn → (a +c 1c) Nn )
3432, 33anim12ci 550 . . . . . . . . . . . . . . . . . 18 ((bGd a Nn ) → ((a +c 1c) Nn d (ran G ∪ {i})))
3534adantrr 697 . . . . . . . . . . . . . . . . 17 ((bGd (a Nn b (ran G ∪ {i}))) → ((a +c 1c) Nn d (ran G ∪ {i})))
36 eleq1 2413 . . . . . . . . . . . . . . . . . 18 (c = (a +c 1c) → (c Nn ↔ (a +c 1c) Nn ))
3736anbi1d 685 . . . . . . . . . . . . . . . . 17 (c = (a +c 1c) → ((c Nn d (ran G ∪ {i})) ↔ ((a +c 1c) Nn d (ran G ∪ {i}))))
3835, 37syl5ibr 212 . . . . . . . . . . . . . . . 16 (c = (a +c 1c) → ((bGd (a Nn b (ran G ∪ {i}))) → (c Nn d (ran G ∪ {i}))))
3938exp3a 425 . . . . . . . . . . . . . . 15 (c = (a +c 1c) → (bGd → ((a Nn b (ran G ∪ {i})) → (c Nn d (ran G ∪ {i})))))
4029, 39sylbi 187 . . . . . . . . . . . . . 14 (a(x V (x +c 1c))c → (bGd → ((a Nn b (ran G ∪ {i})) → (c Nn d (ran G ∪ {i})))))
4140imp 418 . . . . . . . . . . . . 13 ((a(x V (x +c 1c))c bGd) → ((a Nn b (ran G ∪ {i})) → (c Nn d (ran G ∪ {i}))))
42 eleq1 2413 . . . . . . . . . . . . . . . 16 (y = a, b → (y ( Nn × (ran G ∪ {i})) ↔ a, b ( Nn × (ran G ∪ {i}))))
43 opelxp 4812 . . . . . . . . . . . . . . . 16 (a, b ( Nn × (ran G ∪ {i})) ↔ (a Nn b (ran G ∪ {i})))
4442, 43syl6bb 252 . . . . . . . . . . . . . . 15 (y = a, b → (y ( Nn × (ran G ∪ {i})) ↔ (a Nn b (ran G ∪ {i}))))
4544adantr 451 . . . . . . . . . . . . . 14 ((y = a, b z = c, d) → (y ( Nn × (ran G ∪ {i})) ↔ (a Nn b (ran G ∪ {i}))))
46 eleq1 2413 . . . . . . . . . . . . . . . 16 (z = c, d → (z ( Nn × (ran G ∪ {i})) ↔ c, d ( Nn × (ran G ∪ {i}))))
47 opelxp 4812 . . . . . . . . . . . . . . . 16 (c, d ( Nn × (ran G ∪ {i})) ↔ (c Nn d (ran G ∪ {i})))
4846, 47syl6bb 252 . . . . . . . . . . . . . . 15 (z = c, d → (z ( Nn × (ran G ∪ {i})) ↔ (c Nn d (ran G ∪ {i}))))
4948adantl 452 . . . . . . . . . . . . . 14 ((y = a, b z = c, d) → (z ( Nn × (ran G ∪ {i})) ↔ (c Nn d (ran G ∪ {i}))))
5045, 49imbi12d 311 . . . . . . . . . . . . 13 ((y = a, b z = c, d) → ((y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i}))) ↔ ((a Nn b (ran G ∪ {i})) → (c Nn d (ran G ∪ {i})))))
5141, 50syl5ibr 212 . . . . . . . . . . . 12 ((y = a, b z = c, d) → ((a(x V (x +c 1c))c bGd) → (y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i})))))
52513impia 1148 . . . . . . . . . . 11 ((y = a, b z = c, d (a(x V (x +c 1c))c bGd)) → (y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i}))))
5352exlimivv 1635 . . . . . . . . . 10 (cd(y = a, b z = c, d (a(x V (x +c 1c))c bGd)) → (y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i}))))
5453exlimivv 1635 . . . . . . . . 9 (abcd(y = a, b z = c, d (a(x V (x +c 1c))c bGd)) → (y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i}))))
5526, 54sylbi 187 . . . . . . . 8 (y PProd ((x V (x +c 1c)), G)z → (y ( Nn × (ran G ∪ {i})) → z ( Nn × (ran G ∪ {i}))))
5655impcom 419 . . . . . . 7 ((y ( Nn × (ran G ∪ {i})) y PProd ((x V (x +c 1c)), G)z) → z ( Nn × (ran G ∪ {i})))
5756ax-gen 1546 . . . . . 6 z((y ( Nn × (ran G ∪ {i})) y PProd ((x V (x +c 1c)), G)z) → z ( Nn × (ran G ∪ {i})))
5857rgenw 2682 . . . . 5 y FRec (G, i)z((y ( Nn × (ran G ∪ {i})) y PProd ((x V (x +c 1c)), G)z) → z ( Nn × (ran G ∪ {i})))
59 snex 4112 . . . . . 6 {0c, i} V
60 csucex 6260 . . . . . . 7 (x V (x +c 1c)) V
6160, 10pprodex 5839 . . . . . 6 PProd ((x V (x +c 1c)), G) V
62 df-frec 6311 . . . . . 6 FRec (G, i) = Clos1 ({0c, i}, PProd ((x V (x +c 1c)), G))
6359, 61, 62clos1induct 5881 . . . . 5 ((( Nn × (ran G ∪ {i})) V {0c, i} ( Nn × (ran G ∪ {i})) y FRec (G, i)z((y ( Nn × (ran G ∪ {i})) y PProd ((x V (x +c 1c)), G)z) → z ( Nn × (ran G ∪ {i})))) → FRec (G, i) ( Nn × (ran G ∪ {i})))
6414, 25, 58, 63mp3an 1277 . . . 4 FRec (G, i) ( Nn × (ran G ∪ {i}))
658, 64vtoclg 2915 . . 3 (I V → FRec (G, I) ( Nn × (ran G ∪ {I})))
66 df-frec 6311 . . . 4 FRec (G, I) = Clos1 ({0c, I}, PProd ((x V (x +c 1c)), G))
67 opexb 4604 . . . . . . . . . 10 (0c, I V ↔ (0c V I V))
6867simprbi 450 . . . . . . . . 9 (0c, I V → I V)
6968con3i 127 . . . . . . . 8 I V → ¬ 0c, I V)
70 snprc 3789 . . . . . . . 8 0c, I V ↔ {0c, I} = )
7169, 70sylib 188 . . . . . . 7 I V → {0c, I} = )
72 clos1eq1 5875 . . . . . . 7 ({0c, I} = Clos1 ({0c, I}, PProd ((x V (x +c 1c)), G)) = Clos1 (, PProd ((x V (x +c 1c)), G)))
7371, 72syl 15 . . . . . 6 I V → Clos1 ({0c, I}, PProd ((x V (x +c 1c)), G)) = Clos1 (, PProd ((x V (x +c 1c)), G)))
74 eqid 2353 . . . . . . 7 Clos1 (, PProd ((x V (x +c 1c)), G)) = Clos1 (, PProd ((x V (x +c 1c)), G))
7561, 74clos10 5888 . . . . . 6 Clos1 (, PProd ((x V (x +c 1c)), G)) =
7673, 75syl6eq 2401 . . . . 5 I V → Clos1 ({0c, I}, PProd ((x V (x +c 1c)), G)) = )
77 0ss 3580 . . . . 5 ( Nn × (ran G ∪ {I}))
7876, 77syl6eqss 3322 . . . 4 I V → Clos1 ({0c, I}, PProd ((x V (x +c 1c)), G)) ( Nn × (ran G ∪ {I})))
7966, 78syl5eqss 3316 . . 3 I V → FRec (G, I) ( Nn × (ran G ∪ {I})))
8065, 79pm2.61i 156 . 2 FRec (G, I) ( Nn × (ran G ∪ {I}))
811, 80eqsstri 3302 1 F ( Nn × (ran G ∪ {I}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358   w3a 934  wal 1540  wex 1541   = wceq 1642   wcel 1710  wral 2615  Vcvv 2860  cun 3208   wss 3258  c0 3551  {csn 3738  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   +c cplc 4376  cop 4562   class class class wbr 4640   × cxp 4771  ran crn 4774   cmpt 5652   PProd cpprod 5738   Clos1 cclos1 5873   FRec cfrec 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-pprod 5739  df-fix 5741  df-cup 5743  df-disj 5745  df-addcfn 5747  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-clos1 5874  df-frec 6311
This theorem is referenced by:  frecxpg  6316
  Copyright terms: Public domain W3C validator