Step | Hyp | Ref
| Expression |
1 | | frecxp.1 |
. 2
⊢ F = FRec (G, I) |
2 | | eqid 2353 |
. . . . . 6
⊢ G = G |
3 | | freceq12 6312 |
. . . . . 6
⊢ ((G = G ∧ i = I) → FRec
(G, i)
= FRec (G,
I)) |
4 | 2, 3 | mpan 651 |
. . . . 5
⊢ (i = I →
FRec (G,
i) = FRec
(G, I)) |
5 | | sneq 3745 |
. . . . . . 7
⊢ (i = I →
{i} = {I}) |
6 | 5 | uneq2d 3419 |
. . . . . 6
⊢ (i = I →
(ran G ∪ {i}) = (ran G
∪ {I})) |
7 | 6 | xpeq2d 4809 |
. . . . 5
⊢ (i = I → (
Nn × (ran G ∪ {i})) =
( Nn × (ran G ∪ {I}))) |
8 | 4, 7 | sseq12d 3301 |
. . . 4
⊢ (i = I → (
FRec (G,
i) ⊆ (
Nn × (ran G ∪ {i}))
↔ FRec (G, I) ⊆ ( Nn × (ran
G ∪ {I})))) |
9 | | nncex 4397 |
. . . . . 6
⊢ Nn ∈
V |
10 | | frecxp.2 |
. . . . . . . 8
⊢ G ∈
V |
11 | 10 | rnex 5108 |
. . . . . . 7
⊢ ran G ∈
V |
12 | | snex 4112 |
. . . . . . 7
⊢ {i} ∈
V |
13 | 11, 12 | unex 4107 |
. . . . . 6
⊢ (ran G ∪ {i})
∈ V |
14 | 9, 13 | xpex 5116 |
. . . . 5
⊢ ( Nn × (ran G
∪ {i})) ∈ V |
15 | | peano1 4403 |
. . . . . 6
⊢
0c ∈ Nn |
16 | | vex 2863 |
. . . . . . . 8
⊢ i ∈
V |
17 | 16 | snid 3761 |
. . . . . . 7
⊢ i ∈ {i} |
18 | | elun2 3432 |
. . . . . . 7
⊢ (i ∈ {i} → i
∈ (ran G
∪ {i})) |
19 | 17, 18 | ax-mp 5 |
. . . . . 6
⊢ i ∈ (ran G ∪ {i}) |
20 | | 0cex 4393 |
. . . . . . . . 9
⊢
0c ∈
V |
21 | 20, 16 | opex 4589 |
. . . . . . . 8
⊢ 〈0c, i〉 ∈ V |
22 | 21 | snss 3839 |
. . . . . . 7
⊢ (〈0c, i〉 ∈ ( Nn × (ran
G ∪ {i})) ↔ {〈0c, i〉} ⊆ ( Nn × (ran
G ∪ {i}))) |
23 | | opelxp 4812 |
. . . . . . 7
⊢ (〈0c, i〉 ∈ ( Nn × (ran
G ∪ {i})) ↔ (0c ∈ Nn ∧ i ∈ (ran G ∪
{i}))) |
24 | 22, 23 | bitr3i 242 |
. . . . . 6
⊢ ({〈0c, i〉} ⊆ ( Nn × (ran
G ∪ {i})) ↔ (0c ∈ Nn ∧ i ∈ (ran G ∪
{i}))) |
25 | 15, 19, 24 | mpbir2an 886 |
. . . . 5
⊢ {〈0c, i〉} ⊆ ( Nn × (ran
G ∪ {i})) |
26 | | brpprod 5840 |
. . . . . . . . 9
⊢ (y PProd ((x ∈ V ↦ (x
+c 1c)), G)z ↔ ∃a∃b∃c∃d(y = 〈a, b〉 ∧ z = 〈c, d〉 ∧ (a(x ∈ V ↦ (x +c
1c))c ∧ bGd))) |
27 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ a ∈
V |
28 | | vex 2863 |
. . . . . . . . . . . . . . . 16
⊢ c ∈
V |
29 | 27, 28 | brcsuc 6261 |
. . . . . . . . . . . . . . 15
⊢ (a(x ∈ V ↦ (x +c
1c))c ↔ c = (a
+c 1c)) |
30 | | brelrn 4961 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (bGd → d ∈ ran G) |
31 | | elun1 3431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (d ∈ ran G → d ∈ (ran G ∪
{i})) |
32 | 30, 31 | syl 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ (bGd → d ∈ (ran G ∪
{i})) |
33 | | peano2 4404 |
. . . . . . . . . . . . . . . . . . 19
⊢ (a ∈ Nn → (a
+c 1c) ∈
Nn ) |
34 | 32, 33 | anim12ci 550 |
. . . . . . . . . . . . . . . . . 18
⊢ ((bGd ∧ a ∈ Nn ) → ((a
+c 1c) ∈
Nn ∧ d ∈ (ran G ∪ {i}))) |
35 | 34 | adantrr 697 |
. . . . . . . . . . . . . . . . 17
⊢ ((bGd ∧ (a ∈ Nn ∧ b ∈ (ran G ∪ {i})))
→ ((a +c
1c) ∈ Nn ∧ d ∈ (ran G ∪ {i}))) |
36 | | eleq1 2413 |
. . . . . . . . . . . . . . . . . 18
⊢ (c = (a
+c 1c) → (c ∈ Nn ↔ (a
+c 1c) ∈
Nn )) |
37 | 36 | anbi1d 685 |
. . . . . . . . . . . . . . . . 17
⊢ (c = (a
+c 1c) → ((c ∈ Nn ∧ d ∈ (ran G ∪ {i}))
↔ ((a +c
1c) ∈ Nn ∧ d ∈ (ran G ∪ {i})))) |
38 | 35, 37 | syl5ibr 212 |
. . . . . . . . . . . . . . . 16
⊢ (c = (a
+c 1c) → ((bGd ∧ (a ∈ Nn ∧ b ∈ (ran G ∪ {i})))
→ (c ∈ Nn ∧ d ∈ (ran G ∪
{i})))) |
39 | 38 | exp3a 425 |
. . . . . . . . . . . . . . 15
⊢ (c = (a
+c 1c) → (bGd → ((a
∈ Nn ∧ b ∈ (ran G ∪
{i})) → (c ∈ Nn ∧ d ∈ (ran G ∪ {i}))))) |
40 | 29, 39 | sylbi 187 |
. . . . . . . . . . . . . 14
⊢ (a(x ∈ V ↦ (x +c
1c))c → (bGd → ((a
∈ Nn ∧ b ∈ (ran G ∪
{i})) → (c ∈ Nn ∧ d ∈ (ran G ∪ {i}))))) |
41 | 40 | imp 418 |
. . . . . . . . . . . . 13
⊢ ((a(x ∈ V ↦ (x +c
1c))c ∧ bGd) →
((a ∈
Nn ∧ b ∈ (ran G ∪ {i}))
→ (c ∈ Nn ∧ d ∈ (ran G ∪
{i})))) |
42 | | eleq1 2413 |
. . . . . . . . . . . . . . . 16
⊢ (y = 〈a, b〉 → (y
∈ ( Nn ×
(ran G ∪ {i})) ↔ 〈a, b〉 ∈ ( Nn × (ran
G ∪ {i})))) |
43 | | opelxp 4812 |
. . . . . . . . . . . . . . . 16
⊢ (〈a, b〉 ∈ ( Nn × (ran
G ∪ {i})) ↔ (a
∈ Nn ∧ b ∈ (ran G ∪
{i}))) |
44 | 42, 43 | syl6bb 252 |
. . . . . . . . . . . . . . 15
⊢ (y = 〈a, b〉 → (y
∈ ( Nn ×
(ran G ∪ {i})) ↔ (a
∈ Nn ∧ b ∈ (ran G ∪
{i})))) |
45 | 44 | adantr 451 |
. . . . . . . . . . . . . 14
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → (y
∈ ( Nn ×
(ran G ∪ {i})) ↔ (a
∈ Nn ∧ b ∈ (ran G ∪
{i})))) |
46 | | eleq1 2413 |
. . . . . . . . . . . . . . . 16
⊢ (z = 〈c, d〉 → (z
∈ ( Nn ×
(ran G ∪ {i})) ↔ 〈c, d〉 ∈ ( Nn × (ran
G ∪ {i})))) |
47 | | opelxp 4812 |
. . . . . . . . . . . . . . . 16
⊢ (〈c, d〉 ∈ ( Nn × (ran
G ∪ {i})) ↔ (c
∈ Nn ∧ d ∈ (ran G ∪
{i}))) |
48 | 46, 47 | syl6bb 252 |
. . . . . . . . . . . . . . 15
⊢ (z = 〈c, d〉 → (z
∈ ( Nn ×
(ran G ∪ {i})) ↔ (c
∈ Nn ∧ d ∈ (ran G ∪
{i})))) |
49 | 48 | adantl 452 |
. . . . . . . . . . . . . 14
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → (z
∈ ( Nn ×
(ran G ∪ {i})) ↔ (c
∈ Nn ∧ d ∈ (ran G ∪
{i})))) |
50 | 45, 49 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → ((y
∈ ( Nn ×
(ran G ∪ {i})) → z
∈ ( Nn ×
(ran G ∪ {i}))) ↔ ((a
∈ Nn ∧ b ∈ (ran G ∪
{i})) → (c ∈ Nn ∧ d ∈ (ran G ∪ {i}))))) |
51 | 41, 50 | syl5ibr 212 |
. . . . . . . . . . . 12
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉) → ((a(x ∈ V ↦ (x +c
1c))c ∧ bGd) →
(y ∈ (
Nn × (ran G ∪ {i}))
→ z ∈ ( Nn × (ran
G ∪ {i}))))) |
52 | 51 | 3impia 1148 |
. . . . . . . . . . 11
⊢ ((y = 〈a, b〉 ∧ z = 〈c, d〉 ∧ (a(x ∈ V ↦ (x +c
1c))c ∧ bGd)) →
(y ∈ (
Nn × (ran G ∪ {i}))
→ z ∈ ( Nn × (ran
G ∪ {i})))) |
53 | 52 | exlimivv 1635 |
. . . . . . . . . 10
⊢ (∃c∃d(y = 〈a, b〉 ∧ z = 〈c, d〉 ∧ (a(x ∈ V ↦ (x +c
1c))c ∧ bGd)) →
(y ∈ (
Nn × (ran G ∪ {i}))
→ z ∈ ( Nn × (ran
G ∪ {i})))) |
54 | 53 | exlimivv 1635 |
. . . . . . . . 9
⊢ (∃a∃b∃c∃d(y = 〈a, b〉 ∧ z = 〈c, d〉 ∧ (a(x ∈ V ↦ (x +c
1c))c ∧ bGd)) →
(y ∈ (
Nn × (ran G ∪ {i}))
→ z ∈ ( Nn × (ran
G ∪ {i})))) |
55 | 26, 54 | sylbi 187 |
. . . . . . . 8
⊢ (y PProd ((x ∈ V ↦ (x
+c 1c)), G)z →
(y ∈ (
Nn × (ran G ∪ {i}))
→ z ∈ ( Nn × (ran
G ∪ {i})))) |
56 | 55 | impcom 419 |
. . . . . . 7
⊢ ((y ∈ ( Nn × (ran G
∪ {i})) ∧ y PProd ((x ∈ V ↦ (x +c 1c)),
G)z)
→ z ∈ ( Nn × (ran
G ∪ {i}))) |
57 | 56 | ax-gen 1546 |
. . . . . 6
⊢ ∀z((y ∈ ( Nn × (ran G
∪ {i})) ∧ y PProd ((x ∈ V ↦ (x +c 1c)),
G)z)
→ z ∈ ( Nn × (ran
G ∪ {i}))) |
58 | 57 | rgenw 2682 |
. . . . 5
⊢ ∀y ∈ FRec (G, i)∀z((y ∈ ( Nn × (ran G
∪ {i})) ∧ y PProd ((x ∈ V ↦ (x +c 1c)),
G)z)
→ z ∈ ( Nn × (ran
G ∪ {i}))) |
59 | | snex 4112 |
. . . . . 6
⊢ {〈0c, i〉} ∈ V |
60 | | csucex 6260 |
. . . . . . 7
⊢ (x ∈ V ↦ (x
+c 1c)) ∈
V |
61 | 60, 10 | pprodex 5839 |
. . . . . 6
⊢ PProd ((x ∈ V ↦ (x +c 1c)),
G) ∈
V |
62 | | df-frec 6311 |
. . . . . 6
⊢ FRec (G, i) = Clos1 ({〈0c, i〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) |
63 | 59, 61, 62 | clos1induct 5881 |
. . . . 5
⊢ ((( Nn × (ran G
∪ {i})) ∈ V ∧ {〈0c, i〉} ⊆ ( Nn × (ran
G ∪ {i})) ∧ ∀y ∈ FRec (G, i)∀z((y ∈ ( Nn × (ran G
∪ {i})) ∧ y PProd ((x ∈ V ↦ (x +c 1c)),
G)z)
→ z ∈ ( Nn × (ran
G ∪ {i})))) → FRec
(G, i)
⊆ ( Nn ×
(ran G ∪ {i}))) |
64 | 14, 25, 58, 63 | mp3an 1277 |
. . . 4
⊢ FRec (G, i) ⊆ ( Nn × (ran G
∪ {i})) |
65 | 8, 64 | vtoclg 2915 |
. . 3
⊢ (I ∈ V → FRec (G, I) ⊆ ( Nn × (ran G
∪ {I}))) |
66 | | df-frec 6311 |
. . . 4
⊢ FRec (G, I) = Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) |
67 | | opexb 4604 |
. . . . . . . . . 10
⊢ (〈0c, I〉 ∈ V ↔ (0c ∈ V ∧ I ∈
V)) |
68 | 67 | simprbi 450 |
. . . . . . . . 9
⊢ (〈0c, I〉 ∈ V → I
∈ V) |
69 | 68 | con3i 127 |
. . . . . . . 8
⊢ (¬ I ∈ V → ¬
〈0c, I〉 ∈ V) |
70 | | snprc 3789 |
. . . . . . . 8
⊢ (¬ 〈0c, I〉 ∈ V ↔ {〈0c, I〉} = ∅) |
71 | 69, 70 | sylib 188 |
. . . . . . 7
⊢ (¬ I ∈ V →
{〈0c, I〉} = ∅) |
72 | | clos1eq1 5875 |
. . . . . . 7
⊢ ({〈0c, I〉} = ∅ → Clos1
({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) = Clos1
(∅, PProd ((x ∈ V ↦ (x +c 1c)),
G))) |
73 | 71, 72 | syl 15 |
. . . . . 6
⊢ (¬ I ∈ V → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) = Clos1
(∅, PProd ((x ∈ V ↦ (x +c 1c)),
G))) |
74 | | eqid 2353 |
. . . . . . 7
⊢ Clos1 (∅, PProd ((x ∈ V ↦ (x +c 1c)),
G)) = Clos1
(∅, PProd ((x ∈ V ↦ (x +c 1c)),
G)) |
75 | 61, 74 | clos10 5888 |
. . . . . 6
⊢ Clos1 (∅, PProd ((x ∈ V ↦ (x +c 1c)),
G)) = ∅ |
76 | 73, 75 | syl6eq 2401 |
. . . . 5
⊢ (¬ I ∈ V → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) = ∅) |
77 | | 0ss 3580 |
. . . . 5
⊢ ∅ ⊆ ( Nn × (ran G
∪ {I})) |
78 | 76, 77 | syl6eqss 3322 |
. . . 4
⊢ (¬ I ∈ V → Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)),
G)) ⊆ (
Nn × (ran G ∪ {I}))) |
79 | 66, 78 | syl5eqss 3316 |
. . 3
⊢ (¬ I ∈ V → FRec (G, I) ⊆ ( Nn × (ran G
∪ {I}))) |
80 | 65, 79 | pm2.61i 156 |
. 2
⊢ FRec (G, I) ⊆ ( Nn × (ran G
∪ {I})) |
81 | 1, 80 | eqsstri 3302 |
1
⊢ F ⊆ ( Nn × (ran G
∪ {I})) |