New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rgen | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 | ⊢ (x ∈ A → φ) |
Ref | Expression |
---|---|
rgen | ⊢ ∀x ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
2 | rgen.1 | . 2 ⊢ (x ∈ A → φ) | |
3 | 1, 2 | mpgbir 1550 | 1 ⊢ ∀x ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 |
This theorem depends on definitions: df-bi 177 df-ral 2620 |
This theorem is referenced by: rgen2a 2681 rgenw 2682 mprg 2684 mprgbir 2685 rgen2 2711 r19.21be 2716 nrex 2717 rexlimi 2732 sbcth2 3130 reuss 3537 r19.2zb 3641 ral0 3655 unimax 3926 nndisjeq 4430 fnopab 5208 mpteq1 5659 mpteq2ia 5660 fmpti 5694 clos1is 5882 nclenn 6250 nmembers1lem2 6270 nnc3n3p1 6279 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |