NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rgen GIF version

Theorem rgen 2680
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rgen.1 (x Aφ)
Assertion
Ref Expression
rgen x A φ

Proof of Theorem rgen
StepHypRef Expression
1 df-ral 2620 . 2 (x A φx(x Aφ))
2 rgen.1 . 2 (x Aφ)
31, 2mpgbir 1550 1 x A φ
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546
This theorem depends on definitions:  df-bi 177  df-ral 2620
This theorem is referenced by:  rgen2a  2681  rgenw  2682  mprg  2684  mprgbir  2685  rgen2  2711  r19.21be  2716  nrex  2717  rexlimi  2732  sbcth2  3130  reuss  3537  r19.2zb  3641  ral0  3655  unimax  3926  nndisjeq  4430  fnopab  5208  mpteq1  5659  mpteq2ia  5660  fmpti  5694  clos1is  5882  nclenn  6250  nmembers1lem2  6270  nnc3n3p1  6279  nchoicelem12  6301
  Copyright terms: Public domain W3C validator