New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rgen2a | GIF version |
Description: Generalization rule for restricted quantification. Note that x and y needn't be distinct (and illustrates the use of dvelim 2016). (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged. |
Ref | Expression |
---|---|
rgen2a.1 | ⊢ ((x ∈ A ∧ y ∈ A) → φ) |
Ref | Expression |
---|---|
rgen2a | ⊢ ∀x ∈ A ∀y ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . . . . . 8 ⊢ (y = x → (y ∈ A ↔ x ∈ A)) | |
2 | rgen2a.1 | . . . . . . . . 9 ⊢ ((x ∈ A ∧ y ∈ A) → φ) | |
3 | 2 | ex 423 | . . . . . . . 8 ⊢ (x ∈ A → (y ∈ A → φ)) |
4 | 1, 3 | syl6bi 219 | . . . . . . 7 ⊢ (y = x → (y ∈ A → (y ∈ A → φ))) |
5 | 4 | pm2.43d 44 | . . . . . 6 ⊢ (y = x → (y ∈ A → φ)) |
6 | 5 | alimi 1559 | . . . . 5 ⊢ (∀y y = x → ∀y(y ∈ A → φ)) |
7 | 6 | a1d 22 | . . . 4 ⊢ (∀y y = x → (x ∈ A → ∀y(y ∈ A → φ))) |
8 | eleq1 2413 | . . . . . 6 ⊢ (z = x → (z ∈ A ↔ x ∈ A)) | |
9 | 8 | dvelimv 1939 | . . . . 5 ⊢ (¬ ∀y y = x → (x ∈ A → ∀y x ∈ A)) |
10 | 3 | alimi 1559 | . . . . 5 ⊢ (∀y x ∈ A → ∀y(y ∈ A → φ)) |
11 | 9, 10 | syl6 29 | . . . 4 ⊢ (¬ ∀y y = x → (x ∈ A → ∀y(y ∈ A → φ))) |
12 | 7, 11 | pm2.61i 156 | . . 3 ⊢ (x ∈ A → ∀y(y ∈ A → φ)) |
13 | df-ral 2620 | . . 3 ⊢ (∀y ∈ A φ ↔ ∀y(y ∈ A → φ)) | |
14 | 12, 13 | sylibr 203 | . 2 ⊢ (x ∈ A → ∀y ∈ A φ) |
15 | 14 | rgen 2680 | 1 ⊢ ∀x ∈ A ∀y ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-cleq 2346 df-clel 2349 df-ral 2620 |
This theorem is referenced by: vfinnc 4472 ncfinraise 4482 isoid 5491 pw1fnf1o 5856 fce 6189 |
Copyright terms: Public domain | W3C validator |