NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rmobii GIF version

Theorem rmobii 2803
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1 (φψ)
Assertion
Ref Expression
rmobii (∃*x A φ∃*x A ψ)

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3 (φψ)
21a1i 10 . 2 (x A → (φψ))
32rmobiia 2802 1 (∃*x A φ∃*x A ψ)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-eu 2208  df-mo 2209  df-rmo 2623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator