NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-eu GIF version

Definition df-eu 2208
Description: Define existential uniqueness, i.e. "there exists exactly one x such that φ." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2225, eu2 2229, eu3 2230, and eu5 2242 (which in some cases we show with a hypothesis φyφ in place of a distinct variable condition on y and φ). Double uniqueness is tricky: ∃!x∃!yφ does not mean "exactly one x and one y " (see 2eu4 2287). (Contributed by NM, 12-Aug-1993.)
Assertion
Ref Expression
df-eu (∃!xφyx(φx = y))
Distinct variable groups:   x,y   φ,y
Allowed substitution hint:   φ(x)

Detailed syntax breakdown of Definition df-eu
StepHypRef Expression
1 wph . . 3 wff φ
2 vx . . 3 setvar x
31, 2weu 2204 . 2 wff ∃!xφ
4 vy . . . . . 6 setvar y
52, 4weq 1643 . . . . 5 wff x = y
61, 5wb 176 . . . 4 wff (φx = y)
76, 2wal 1540 . . 3 wff x(φx = y)
87, 4wex 1541 . 2 wff yx(φx = y)
93, 8wb 176 1 wff (∃!xφyx(φx = y))
Colors of variables: wff setvar class
This definition is referenced by:  euf  2210  eubid  2211  nfeu1  2214  nfeud2  2216  sb8eu  2222  exists1  2293  reu6  3026  euabsn2  3792  dfeu2  4334  iotauni  4352  iota1  4354  iotanul  4355  iotaex  4357  iota4  4358  fv3  5342
  Copyright terms: Public domain W3C validator