New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-eu | GIF version |
Description: Define existential uniqueness, i.e. "there exists exactly one x such that φ." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2225, eu2 2229, eu3 2230, and eu5 2242 (which in some cases we show with a hypothesis φ → ∀yφ in place of a distinct variable condition on y and φ). Double uniqueness is tricky: ∃!x∃!yφ does not mean "exactly one x and one y " (see 2eu4 2287). (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
df-eu | ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | vx | . . 3 setvar x | |
3 | 1, 2 | weu 2204 | . 2 wff ∃!xφ |
4 | vy | . . . . . 6 setvar y | |
5 | 2, 4 | weq 1643 | . . . . 5 wff x = y |
6 | 1, 5 | wb 176 | . . . 4 wff (φ ↔ x = y) |
7 | 6, 2 | wal 1540 | . . 3 wff ∀x(φ ↔ x = y) |
8 | 7, 4 | wex 1541 | . 2 wff ∃y∀x(φ ↔ x = y) |
9 | 3, 8 | wb 176 | 1 wff (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) |
Colors of variables: wff setvar class |
This definition is referenced by: euf 2210 eubid 2211 nfeu1 2214 nfeud2 2216 sb8eu 2222 exists1 2293 reu6 3026 euabsn2 3792 dfeu2 4334 iotauni 4352 iota1 4354 iotanul 4355 iotaex 4357 iota4 4358 fv3 5342 |
Copyright terms: Public domain | W3C validator |