New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspec2 | GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
rspec2.1 | ⊢ ∀x ∈ A ∀y ∈ B φ |
Ref | Expression |
---|---|
rspec2 | ⊢ ((x ∈ A ∧ y ∈ B) → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec2.1 | . . 3 ⊢ ∀x ∈ A ∀y ∈ B φ | |
2 | 1 | rspec 2679 | . 2 ⊢ (x ∈ A → ∀y ∈ B φ) |
3 | 2 | r19.21bi 2713 | 1 ⊢ ((x ∈ A ∧ y ∈ B) → φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 |
This theorem is referenced by: rspec3 2715 |
Copyright terms: Public domain | W3C validator |