NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  r19.21bi GIF version

Theorem r19.21bi 2713
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
r19.21bi.1 (φx A ψ)
Assertion
Ref Expression
r19.21bi ((φ x A) → ψ)

Proof of Theorem r19.21bi
StepHypRef Expression
1 r19.21bi.1 . . . 4 (φx A ψ)
2 df-ral 2620 . . . 4 (x A ψx(x Aψ))
31, 2sylib 188 . . 3 (φx(x Aψ))
4319.21bi 1758 . 2 (φ → (x Aψ))
54imp 418 1 ((φ x A) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620
This theorem is referenced by:  rspec2  2714  rspec3  2715  r19.21be  2716  phidisjnn  4616
  Copyright terms: Public domain W3C validator