New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.21bi | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
r19.21bi.1 | ⊢ (φ → ∀x ∈ A ψ) |
Ref | Expression |
---|---|
r19.21bi | ⊢ ((φ ∧ x ∈ A) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21bi.1 | . . . 4 ⊢ (φ → ∀x ∈ A ψ) | |
2 | df-ral 2620 | . . . 4 ⊢ (∀x ∈ A ψ ↔ ∀x(x ∈ A → ψ)) | |
3 | 1, 2 | sylib 188 | . . 3 ⊢ (φ → ∀x(x ∈ A → ψ)) |
4 | 3 | 19.21bi 1758 | . 2 ⊢ (φ → (x ∈ A → ψ)) |
5 | 4 | imp 418 | 1 ⊢ ((φ ∧ x ∈ A) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 |
This theorem is referenced by: rspec2 2714 rspec3 2715 r19.21be 2716 phidisjnn 4616 |
Copyright terms: Public domain | W3C validator |