| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sb5f | GIF version | ||
| Description: Equivalence for substitution when y is not free in φ. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sb6f.1 | ⊢ Ⅎyφ |
| Ref | Expression |
|---|---|
| sb5f | ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6f.1 | . . 3 ⊢ Ⅎyφ | |
| 2 | 1 | sb6f 2039 | . 2 ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) |
| 3 | 1 | equs45f 1989 | . 2 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) |
| 4 | 2, 3 | bitr4i 243 | 1 ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |