New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb6f | GIF version |
Description: Equivalence for substitution when y is not free in φ. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sb6f.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
sb6f | ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6f.1 | . . . . 5 ⊢ Ⅎyφ | |
2 | 1 | nfri 1762 | . . . 4 ⊢ (φ → ∀yφ) |
3 | 2 | sbimi 1652 | . . 3 ⊢ ([y / x]φ → [y / x]∀yφ) |
4 | sb4a 1923 | . . 3 ⊢ ([y / x]∀yφ → ∀x(x = y → φ)) | |
5 | 3, 4 | syl 15 | . 2 ⊢ ([y / x]φ → ∀x(x = y → φ)) |
6 | sb2 2023 | . 2 ⊢ (∀x(x = y → φ) → [y / x]φ) | |
7 | 5, 6 | impbii 180 | 1 ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb5f 2040 |
Copyright terms: Public domain | W3C validator |