New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs45f | GIF version |
Description: Two ways of expressing substitution when y is not free in φ. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
equs45f.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
equs45f | ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equs45f.1 | . . . . . 6 ⊢ Ⅎyφ | |
2 | 1 | nfri 1762 | . . . . 5 ⊢ (φ → ∀yφ) |
3 | 2 | anim2i 552 | . . . 4 ⊢ ((x = y ∧ φ) → (x = y ∧ ∀yφ)) |
4 | 3 | eximi 1576 | . . 3 ⊢ (∃x(x = y ∧ φ) → ∃x(x = y ∧ ∀yφ)) |
5 | equs5a 1887 | . . 3 ⊢ (∃x(x = y ∧ ∀yφ) → ∀x(x = y → φ)) | |
6 | 4, 5 | syl 15 | . 2 ⊢ (∃x(x = y ∧ φ) → ∀x(x = y → φ)) |
7 | equs4 1959 | . 2 ⊢ (∀x(x = y → φ) → ∃x(x = y ∧ φ)) | |
8 | 6, 7 | impbii 180 | 1 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: sb5f 2040 |
Copyright terms: Public domain | W3C validator |