NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equs45f GIF version

Theorem equs45f 1989
Description: Two ways of expressing substitution when y is not free in φ. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
equs45f.1 yφ
Assertion
Ref Expression
equs45f (x(x = y φ) ↔ x(x = yφ))

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6 yφ
21nfri 1762 . . . . 5 (φyφ)
32anim2i 552 . . . 4 ((x = y φ) → (x = y yφ))
43eximi 1576 . . 3 (x(x = y φ) → x(x = y yφ))
5 equs5a 1887 . . 3 (x(x = y yφ) → x(x = yφ))
64, 5syl 15 . 2 (x(x = y φ) → x(x = yφ))
7 equs4 1959 . 2 (x(x = yφ) → x(x = y φ))
86, 7impbii 180 1 (x(x = y φ) ↔ x(x = yφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  sb5f  2040
  Copyright terms: Public domain W3C validator