NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbceq1d GIF version

Theorem sbceq1d 3052
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
sbceq1d.1 (φA = B)
Assertion
Ref Expression
sbceq1d (φ → ([̣A / xφ ↔ [̣B / xφ))

Proof of Theorem sbceq1d
StepHypRef Expression
1 sbceq1d.1 . 2 (φA = B)
2 dfsbcq 3049 . 2 (A = B → ([̣A / xφ ↔ [̣B / xφ))
31, 2syl 15 1 (φ → ([̣A / xφ ↔ [̣B / xφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349  df-sbc 3048
This theorem is referenced by:  sbceq1dd  3053
  Copyright terms: Public domain W3C validator