New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbceq1d | GIF version |
Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
sbceq1d.1 | ⊢ (φ → A = B) |
Ref | Expression |
---|---|
sbceq1d | ⊢ (φ → ([̣A / x]̣φ ↔ [̣B / x]̣φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1d.1 | . 2 ⊢ (φ → A = B) | |
2 | dfsbcq 3049 | . 2 ⊢ (A = B → ([̣A / x]̣φ ↔ [̣B / x]̣φ)) | |
3 | 1, 2 | syl 15 | 1 ⊢ (φ → ([̣A / x]̣φ ↔ [̣B / x]̣φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 [̣wsbc 3047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-sbc 3048 |
This theorem is referenced by: sbceq1dd 3053 |
Copyright terms: Public domain | W3C validator |