| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sbceq1dd | GIF version | ||
| Description: Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| sbceq1d.1 | ⊢ (φ → A = B) |
| sbceq1dd.2 | ⊢ (φ → [̣A / x]̣φ) |
| Ref | Expression |
|---|---|
| sbceq1dd | ⊢ (φ → [̣B / x]̣φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceq1dd.2 | . 2 ⊢ (φ → [̣A / x]̣φ) | |
| 2 | sbceq1d.1 | . . 3 ⊢ (φ → A = B) | |
| 3 | 2 | sbceq1d 3052 | . 2 ⊢ (φ → ([̣A / x]̣φ ↔ [̣B / x]̣φ)) |
| 4 | 1, 3 | mpbid 201 | 1 ⊢ (φ → [̣B / x]̣φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1642 [̣wsbc 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 df-clel 2349 df-sbc 3048 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |