New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sblbis | GIF version |
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
sblbis.1 | ⊢ ([y / x]φ ↔ ψ) |
Ref | Expression |
---|---|
sblbis | ⊢ ([y / x](χ ↔ φ) ↔ ([y / x]χ ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbi 2071 | . 2 ⊢ ([y / x](χ ↔ φ) ↔ ([y / x]χ ↔ [y / x]φ)) | |
2 | sblbis.1 | . . 3 ⊢ ([y / x]φ ↔ ψ) | |
3 | 2 | bibi2i 304 | . 2 ⊢ (([y / x]χ ↔ [y / x]φ) ↔ ([y / x]χ ↔ ψ)) |
4 | 1, 3 | bitri 240 | 1 ⊢ ([y / x](χ ↔ φ) ↔ ([y / x]χ ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb8eu 2222 sb8iota 4347 |
Copyright terms: Public domain | W3C validator |