| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > simplll | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
| Ref | Expression |
|---|---|
| simplll | ⊢ ((((φ ∧ ψ) ∧ χ) ∧ θ) → φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . 2 ⊢ ((φ ∧ ψ) → φ) | |
| 2 | 1 | ad2antrr 706 | 1 ⊢ ((((φ ∧ ψ) ∧ χ) ∧ θ) → φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: simp-4l 742 prepeano4 4452 nnpw1ex 4485 tfindi 4497 evenodddisj 4517 enprmaplem3 6079 |
| Copyright terms: Public domain | W3C validator |