New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simpllr | GIF version |
Description: Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) |
Ref | Expression |
---|---|
simpllr | ⊢ ((((φ ∧ ψ) ∧ χ) ∧ θ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((φ ∧ ψ) → ψ) | |
2 | 1 | ad2antrr 706 | 1 ⊢ ((((φ ∧ ψ) ∧ χ) ∧ θ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp-4r 743 prepeano4 4452 tfindi 4497 evenodddisj 4517 sfin112 4530 enprmaplem3 6079 |
Copyright terms: Public domain | W3C validator |