NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ad2antrr GIF version

Theorem ad2antrr 706
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.)
Hypothesis
Ref Expression
ad2ant.1 (φψ)
Assertion
Ref Expression
ad2antrr (((φ χ) θ) → ψ)

Proof of Theorem ad2antrr
StepHypRef Expression
1 ad2ant.1 . . 3 (φψ)
21adantr 451 . 2 ((φ θ) → ψ)
32adantlr 695 1 (((φ χ) θ) → ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ad3antrrr  710  simpll  730  simplll  734  simpllr  735  ax11eq  2193  ax11el  2194  ax11indalem  2197  ax11inda2ALT  2198  vtoclgft  2906  reupick  3540  ltfinasym  4461  sfinltfin  4536  vfinspsslem1  4551  isotr  5496  qsdisj  5996  nntccl  6171  sbthlem3  6206  ltlenlec  6208  letc  6232  ncslemuc  6256  fnfrec  6321
  Copyright terms: Public domain W3C validator