New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ad2antrr | GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999.) (Proof shortened by Wolf Lammen, 20-Nov-2012.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
ad2antrr | ⊢ (((φ ∧ χ) ∧ θ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | adantr 451 | . 2 ⊢ ((φ ∧ θ) → ψ) |
3 | 2 | adantlr 695 | 1 ⊢ (((φ ∧ χ) ∧ θ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad3antrrr 710 simpll 730 simplll 734 simpllr 735 ax11eq 2193 ax11el 2194 ax11indalem 2197 ax11inda2ALT 2198 vtoclgft 2906 reupick 3540 ltfinasym 4461 sfinltfin 4536 vfinspsslem1 4551 isotr 5496 qsdisj 5996 nntccl 6171 sbthlem3 6206 ltlenlec 6208 letc 6232 ncslemuc 6256 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |