New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > simprr | GIF version |
Description: Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.) |
Ref | Expression |
---|---|
simprr | ⊢ ((φ ∧ (ψ ∧ χ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (χ → χ) | |
2 | 1 | ad2antll 709 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: simp1rr 1021 simp2rr 1025 simp3rr 1029 prepeano4 4452 preaddccan2 4456 tfinltfin 4502 tfinnn 4535 vfinspsslem1 4551 weds 5939 ertr 5955 erth 5969 enadj 6061 enprmaplem3 6079 nntccl 6171 sbthlem1 6204 sbthlem3 6206 sbth 6207 tlecg 6231 nchoicelem6 6295 nchoicelem8 6297 nchoicelem19 6308 nchoice 6309 |
Copyright terms: Public domain | W3C validator |