Step | Hyp | Ref
| Expression |
1 | | n0 3560 |
. . 3
⊢ ((M +c N) ≠ ∅ ↔
∃a
a ∈
(M +c N)) |
2 | | nncaddccl 4420 |
. . . . . . . 8
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (M
+c N) ∈ Nn
) |
3 | | tfincl 4493 |
. . . . . . . 8
⊢ ((M +c N) ∈ Nn → Tfin
(M +c N) ∈ Nn ) |
4 | 2, 3 | syl 15 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → Tfin
(M +c N) ∈ Nn ) |
5 | 4 | 3adant3 975 |
. . . . . 6
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → Tfin (M
+c N) ∈ Nn
) |
6 | | tfincl 4493 |
. . . . . . . 8
⊢ (M ∈ Nn → Tfin
M ∈ Nn ) |
7 | | tfincl 4493 |
. . . . . . . 8
⊢ (N ∈ Nn → Tfin
N ∈ Nn ) |
8 | | nncaddccl 4420 |
. . . . . . . 8
⊢ (( Tfin M
∈ Nn ∧ Tfin
N ∈ Nn ) → ( Tfin M
+c Tfin N) ∈ Nn ) |
9 | 6, 7, 8 | syl2an 463 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → ( Tfin M
+c Tfin N) ∈ Nn ) |
10 | 9 | 3adant3 975 |
. . . . . 6
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → ( Tfin M
+c Tfin N) ∈ Nn ) |
11 | 2 | 3adant3 975 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → (M
+c N) ∈ Nn
) |
12 | | simp3 957 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → a
∈ (M
+c N)) |
13 | | tfinpw1 4495 |
. . . . . . 7
⊢ (((M +c N) ∈ Nn ∧ a ∈ (M +c N)) → ℘1a ∈ Tfin (M
+c N)) |
14 | 11, 12, 13 | syl2anc 642 |
. . . . . 6
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → ℘1a ∈ Tfin (M
+c N)) |
15 | | eladdc 4399 |
. . . . . . . 8
⊢ (a ∈ (M +c N) ↔ ∃b ∈ M ∃c ∈ N ((b ∩ c) =
∅ ∧
a = (b
∪ c))) |
16 | | simplll 734 |
. . . . . . . . . . . . 13
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → M ∈ Nn ) |
17 | | simplrl 736 |
. . . . . . . . . . . . 13
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → b ∈ M) |
18 | | tfinpw1 4495 |
. . . . . . . . . . . . 13
⊢ ((M ∈ Nn ∧ b ∈ M) → ℘1b ∈ Tfin M) |
19 | 16, 17, 18 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → ℘1b ∈ Tfin M) |
20 | | simpllr 735 |
. . . . . . . . . . . . 13
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → N ∈ Nn ) |
21 | | simplrr 737 |
. . . . . . . . . . . . 13
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → c ∈ N) |
22 | | tfinpw1 4495 |
. . . . . . . . . . . . 13
⊢ ((N ∈ Nn ∧ c ∈ N) → ℘1c ∈ Tfin N) |
23 | 20, 21, 22 | syl2anc 642 |
. . . . . . . . . . . 12
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → ℘1c ∈ Tfin N) |
24 | | pw1eq 4144 |
. . . . . . . . . . . . . 14
⊢ ((b ∩ c) =
∅ → ℘1(b ∩ c) =
℘1∅) |
25 | | pw1in 4165 |
. . . . . . . . . . . . . 14
⊢ ℘1(b ∩ c) =
(℘1b ∩ ℘1c) |
26 | | pw10 4162 |
. . . . . . . . . . . . . 14
⊢ ℘1∅
= ∅ |
27 | 24, 25, 26 | 3eqtr3g 2408 |
. . . . . . . . . . . . 13
⊢ ((b ∩ c) =
∅ → (℘1b ∩ ℘1c) = ∅) |
28 | 27 | adantl 452 |
. . . . . . . . . . . 12
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → (℘1b ∩ ℘1c) = ∅) |
29 | | eladdci 4400 |
. . . . . . . . . . . 12
⊢ ((℘1b ∈ Tfin M
∧ ℘1c ∈ Tfin N
∧ (℘1b ∩ ℘1c) = ∅) →
(℘1b ∪ ℘1c) ∈ ( Tfin M
+c Tfin N)) |
30 | 19, 23, 28, 29 | syl3anc 1182 |
. . . . . . . . . . 11
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → (℘1b ∪ ℘1c) ∈ ( Tfin M
+c Tfin N)) |
31 | | pw1eq 4144 |
. . . . . . . . . . . . 13
⊢ (a = (b ∪
c) → ℘1a = ℘1(b ∪ c)) |
32 | | pw1un 4164 |
. . . . . . . . . . . . 13
⊢ ℘1(b ∪ c) =
(℘1b ∪ ℘1c) |
33 | 31, 32 | syl6eq 2401 |
. . . . . . . . . . . 12
⊢ (a = (b ∪
c) → ℘1a = (℘1b ∪ ℘1c)) |
34 | 33 | eleq1d 2419 |
. . . . . . . . . . 11
⊢ (a = (b ∪
c) → (℘1a ∈ ( Tfin M
+c Tfin N) ↔ (℘1b ∪ ℘1c) ∈ ( Tfin M
+c Tfin N))) |
35 | 30, 34 | syl5ibrcom 213 |
. . . . . . . . . 10
⊢ ((((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) ∧ (b ∩ c) =
∅) → (a = (b ∪
c) → ℘1a ∈ ( Tfin M
+c Tfin N))) |
36 | 35 | expimpd 586 |
. . . . . . . . 9
⊢ (((M ∈ Nn ∧ N ∈ Nn ) ∧ (b ∈ M ∧ c ∈ N)) → (((b
∩ c) = ∅ ∧ a = (b ∪
c)) → ℘1a ∈ ( Tfin M
+c Tfin N))) |
37 | 36 | rexlimdvva 2746 |
. . . . . . . 8
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (∃b ∈ M ∃c ∈ N ((b ∩ c) =
∅ ∧
a = (b
∪ c)) → ℘1a ∈ ( Tfin M
+c Tfin N))) |
38 | 15, 37 | syl5bi 208 |
. . . . . . 7
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (a ∈ (M
+c N) → ℘1a ∈ ( Tfin M
+c Tfin N))) |
39 | 38 | 3impia 1148 |
. . . . . 6
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → ℘1a ∈ ( Tfin M
+c Tfin N)) |
40 | | nnceleq 4431 |
. . . . . 6
⊢ ((( Tfin (M
+c N) ∈ Nn ∧ ( Tfin
M +c Tfin N)
∈ Nn ) ∧ (℘1a ∈ Tfin (M
+c N) ∧ ℘1a ∈ ( Tfin M
+c Tfin N))) → Tfin (M
+c N) = ( Tfin M
+c Tfin N)) |
41 | 5, 10, 14, 39, 40 | syl22anc 1183 |
. . . . 5
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ a ∈ (M +c N)) → Tfin (M
+c N) = ( Tfin M
+c Tfin N)) |
42 | 41 | 3expia 1153 |
. . . 4
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (a ∈ (M
+c N) → Tfin (M
+c N) = ( Tfin M
+c Tfin N))) |
43 | 42 | exlimdv 1636 |
. . 3
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → (∃a a ∈ (M +c N) → Tfin (M
+c N) = ( Tfin M
+c Tfin N))) |
44 | 1, 43 | syl5bi 208 |
. 2
⊢ ((M ∈ Nn ∧ N ∈ Nn ) → ((M
+c N) ≠ ∅ → Tfin (M
+c N) = ( Tfin M
+c Tfin N))) |
45 | 44 | 3impia 1148 |
1
⊢ ((M ∈ Nn ∧ N ∈ Nn ∧ (M +c N) ≠ ∅) →
Tfin (M +c N) = ( Tfin
M +c Tfin N)) |