NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sps-o GIF version

Theorem sps-o 2159
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sps-o.1 (φψ)
Assertion
Ref Expression
sps-o (xφψ)

Proof of Theorem sps-o
StepHypRef Expression
1 ax-4 2135 . 2 (xφφ)
2 sps-o.1 . 2 (φψ)
31, 2syl 15 1 (xφψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 2135
This theorem is referenced by:  ax467to6  2171  ax10-16  2190  ax11eq  2193  ax11el  2194  ax11inda  2200  ax11v2-o  2201  ax10o-o  2203
  Copyright terms: Public domain W3C validator