| Step | Hyp | Ref
| Expression |
| 1 | | 19.26 1593 |
. . 3
⊢ (∀x(x = z ∧ x = w) ↔ (∀x x = z ∧ ∀x x = w)) |
| 2 | | elequ1 1713 |
. . . . . . . . 9
⊢ (x = y →
(x ∈
x ↔ y ∈ x)) |
| 3 | | elequ2 1715 |
. . . . . . . . 9
⊢ (x = y →
(y ∈
x ↔ y ∈ y)) |
| 4 | 2, 3 | bitrd 244 |
. . . . . . . 8
⊢ (x = y →
(x ∈
x ↔ y ∈ y)) |
| 5 | 4 | adantl 452 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ x = y) → (x
∈ x
↔ y ∈ y)) |
| 6 | | ax-17 1616 |
. . . . . . . . . 10
⊢ (v ∈ v → ∀x v ∈ v) |
| 7 | | ax-17 1616 |
. . . . . . . . . 10
⊢ (y ∈ y → ∀v y ∈ y) |
| 8 | | elequ1 1713 |
. . . . . . . . . . 11
⊢ (v = y →
(v ∈
v ↔ y ∈ v)) |
| 9 | | elequ2 1715 |
. . . . . . . . . . 11
⊢ (v = y →
(y ∈
v ↔ y ∈ y)) |
| 10 | 8, 9 | bitrd 244 |
. . . . . . . . . 10
⊢ (v = y →
(v ∈
v ↔ y ∈ y)) |
| 11 | 6, 7, 10 | dvelimf-o 2180 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
(y ∈
y → ∀x y ∈ y)) |
| 12 | 4 | biimprcd 216 |
. . . . . . . . . 10
⊢ (y ∈ y → (x =
y → x ∈ x)) |
| 13 | 12 | alimi 1559 |
. . . . . . . . 9
⊢ (∀x y ∈ y → ∀x(x = y →
x ∈
x)) |
| 14 | 11, 13 | syl6 29 |
. . . . . . . 8
⊢ (¬ ∀x x = y →
(y ∈
y → ∀x(x = y →
x ∈
x))) |
| 15 | 14 | adantr 451 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ x = y) → (y
∈ y
→ ∀x(x = y → x ∈ x))) |
| 16 | 5, 15 | sylbid 206 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ x = y) → (x
∈ x
→ ∀x(x = y → x ∈ x))) |
| 17 | 16 | adantl 452 |
. . . . 5
⊢ ((∀x(x = z ∧ x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (x
∈ x
→ ∀x(x = y → x ∈ x))) |
| 18 | | elequ1 1713 |
. . . . . . . . 9
⊢ (x = z →
(x ∈
x ↔ z ∈ x)) |
| 19 | | elequ2 1715 |
. . . . . . . . 9
⊢ (x = w →
(z ∈
x ↔ z ∈ w)) |
| 20 | 18, 19 | sylan9bb 680 |
. . . . . . . 8
⊢ ((x = z ∧ x = w) → (x
∈ x
↔ z ∈ w)) |
| 21 | 20 | sps-o 2159 |
. . . . . . 7
⊢ (∀x(x = z ∧ x = w) → (x
∈ x
↔ z ∈ w)) |
| 22 | | nfa1-o 2166 |
. . . . . . . 8
⊢ Ⅎx∀x(x = z ∧ x = w) |
| 23 | 21 | imbi2d 307 |
. . . . . . . 8
⊢ (∀x(x = z ∧ x = w) → ((x =
y → x ∈ x) ↔ (x =
y → z ∈ w))) |
| 24 | 22, 23 | albid 1772 |
. . . . . . 7
⊢ (∀x(x = z ∧ x = w) → (∀x(x = y →
x ∈
x) ↔ ∀x(x = y →
z ∈
w))) |
| 25 | 21, 24 | imbi12d 311 |
. . . . . 6
⊢ (∀x(x = z ∧ x = w) → ((x
∈ x
→ ∀x(x = y → x ∈ x)) ↔
(z ∈
w → ∀x(x = y →
z ∈
w)))) |
| 26 | 25 | adantr 451 |
. . . . 5
⊢ ((∀x(x = z ∧ x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((x
∈ x
→ ∀x(x = y → x ∈ x)) ↔
(z ∈
w → ∀x(x = y →
z ∈
w)))) |
| 27 | 17, 26 | mpbid 201 |
. . . 4
⊢ ((∀x(x = z ∧ x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ w
→ ∀x(x = y → z ∈ w))) |
| 28 | 27 | exp32 588 |
. . 3
⊢ (∀x(x = z ∧ x = w) → (¬ ∀x x = y →
(x = y
→ (z ∈ w →
∀x(x = y → z ∈ w))))) |
| 29 | 1, 28 | sylbir 204 |
. 2
⊢ ((∀x x = z ∧ ∀x x = w) → (¬ ∀x x = y →
(x = y
→ (z ∈ w →
∀x(x = y → z ∈ w))))) |
| 30 | | elequ1 1713 |
. . . . . . 7
⊢ (x = y →
(x ∈
w ↔ y ∈ w)) |
| 31 | 30 | ad2antll 709 |
. . . . . 6
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (x
∈ w
↔ y ∈ w)) |
| 32 | | ax-15 2143 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
(¬ ∀x x = w → (y
∈ w
→ ∀x y ∈ w))) |
| 33 | 32 | impcom 419 |
. . . . . . . 8
⊢ ((¬ ∀x x = w ∧ ¬ ∀x x = y) →
(y ∈
w → ∀x y ∈ w)) |
| 34 | 33 | adantrr 697 |
. . . . . . 7
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (y
∈ w
→ ∀x y ∈ w)) |
| 35 | 30 | biimprcd 216 |
. . . . . . . 8
⊢ (y ∈ w → (x =
y → x ∈ w)) |
| 36 | 35 | alimi 1559 |
. . . . . . 7
⊢ (∀x y ∈ w → ∀x(x = y →
x ∈
w)) |
| 37 | 34, 36 | syl6 29 |
. . . . . 6
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (y
∈ w
→ ∀x(x = y → x ∈ w))) |
| 38 | 31, 37 | sylbid 206 |
. . . . 5
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (x
∈ w
→ ∀x(x = y → x ∈ w))) |
| 39 | 38 | adantll 694 |
. . . 4
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (x
∈ w
→ ∀x(x = y → x ∈ w))) |
| 40 | | elequ1 1713 |
. . . . . . 7
⊢ (x = z →
(x ∈
w ↔ z ∈ w)) |
| 41 | 40 | sps-o 2159 |
. . . . . 6
⊢ (∀x x = z →
(x ∈
w ↔ z ∈ w)) |
| 42 | 41 | imbi2d 307 |
. . . . . . 7
⊢ (∀x x = z →
((x = y
→ x ∈ w) ↔
(x = y
→ z ∈ w))) |
| 43 | 42 | dral2-o 2181 |
. . . . . 6
⊢ (∀x x = z →
(∀x(x = y → x ∈ w) ↔
∀x(x = y → z ∈ w))) |
| 44 | 41, 43 | imbi12d 311 |
. . . . 5
⊢ (∀x x = z →
((x ∈
w → ∀x(x = y →
x ∈
w)) ↔ (z ∈ w → ∀x(x = y →
z ∈
w)))) |
| 45 | 44 | ad2antrr 706 |
. . . 4
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((x
∈ w
→ ∀x(x = y → x ∈ w)) ↔
(z ∈
w → ∀x(x = y →
z ∈
w)))) |
| 46 | 39, 45 | mpbid 201 |
. . 3
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ w
→ ∀x(x = y → z ∈ w))) |
| 47 | 46 | exp32 588 |
. 2
⊢ ((∀x x = z ∧ ¬ ∀x x = w) →
(¬ ∀x x = y → (x =
y → (z ∈ w → ∀x(x = y →
z ∈
w))))) |
| 48 | | elequ2 1715 |
. . . . . . 7
⊢ (x = y →
(z ∈
x ↔ z ∈ y)) |
| 49 | 48 | ad2antll 709 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ x
↔ z ∈ y)) |
| 50 | | ax-15 2143 |
. . . . . . . . 9
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → (z
∈ y
→ ∀x z ∈ y))) |
| 51 | 50 | imp 418 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(z ∈
y → ∀x z ∈ y)) |
| 52 | 51 | adantrr 697 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ y
→ ∀x z ∈ y)) |
| 53 | 48 | biimprcd 216 |
. . . . . . . 8
⊢ (z ∈ y → (x =
y → z ∈ x)) |
| 54 | 53 | alimi 1559 |
. . . . . . 7
⊢ (∀x z ∈ y → ∀x(x = y →
z ∈
x)) |
| 55 | 52, 54 | syl6 29 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ y
→ ∀x(x = y → z ∈ x))) |
| 56 | 49, 55 | sylbid 206 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ x
→ ∀x(x = y → z ∈ x))) |
| 57 | 56 | adantlr 695 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ x
→ ∀x(x = y → z ∈ x))) |
| 58 | 19 | sps-o 2159 |
. . . . . 6
⊢ (∀x x = w →
(z ∈
x ↔ z ∈ w)) |
| 59 | 58 | imbi2d 307 |
. . . . . . 7
⊢ (∀x x = w →
((x = y
→ z ∈ x) ↔
(x = y
→ z ∈ w))) |
| 60 | 59 | dral2-o 2181 |
. . . . . 6
⊢ (∀x x = w →
(∀x(x = y → z ∈ x) ↔
∀x(x = y → z ∈ w))) |
| 61 | 58, 60 | imbi12d 311 |
. . . . 5
⊢ (∀x x = w →
((z ∈
x → ∀x(x = y →
z ∈
x)) ↔ (z ∈ w → ∀x(x = y →
z ∈
w)))) |
| 62 | 61 | ad2antlr 707 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((z
∈ x
→ ∀x(x = y → z ∈ x)) ↔
(z ∈
w → ∀x(x = y →
z ∈
w)))) |
| 63 | 57, 62 | mpbid 201 |
. . 3
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z
∈ w
→ ∀x(x = y → z ∈ w))) |
| 64 | 63 | exp32 588 |
. 2
⊢ ((¬ ∀x x = z ∧ ∀x x = w) → (¬ ∀x x = y →
(x = y
→ (z ∈ w →
∀x(x = y → z ∈ w))))) |
| 65 | | a9ev 1656 |
. . . . 5
⊢ ∃u u = w |
| 66 | | a9ev 1656 |
. . . . . . 7
⊢ ∃v v = z |
| 67 | | ax-1 6 |
. . . . . . . . . . 11
⊢ (v ∈ u → (x =
y → v ∈ u)) |
| 68 | 67 | alrimiv 1631 |
. . . . . . . . . 10
⊢ (v ∈ u → ∀x(x = y →
v ∈
u)) |
| 69 | | elequ1 1713 |
. . . . . . . . . . . . 13
⊢ (v = z →
(v ∈
u ↔ z ∈ u)) |
| 70 | | elequ2 1715 |
. . . . . . . . . . . . 13
⊢ (u = w →
(z ∈
u ↔ z ∈ w)) |
| 71 | 69, 70 | sylan9bb 680 |
. . . . . . . . . . . 12
⊢ ((v = z ∧ u = w) → (v
∈ u
↔ z ∈ w)) |
| 72 | 71 | adantl 452 |
. . . . . . . . . . 11
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(v ∈
u ↔ z ∈ w)) |
| 73 | | dveeq2-o 2184 |
. . . . . . . . . . . . . . 15
⊢ (¬ ∀x x = z →
(v = z
→ ∀x v = z)) |
| 74 | | dveeq2-o 2184 |
. . . . . . . . . . . . . . 15
⊢ (¬ ∀x x = w →
(u = w
→ ∀x u = w)) |
| 75 | 73, 74 | im2anan9 808 |
. . . . . . . . . . . . . 14
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
((v = z
∧ u =
w) → (∀x v = z ∧ ∀x u = w))) |
| 76 | 75 | imp 418 |
. . . . . . . . . . . . 13
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(∀x
v = z
∧ ∀x u = w)) |
| 77 | | 19.26 1593 |
. . . . . . . . . . . . 13
⊢ (∀x(v = z ∧ u = w) ↔ (∀x v = z ∧ ∀x u = w)) |
| 78 | 76, 77 | sylibr 203 |
. . . . . . . . . . . 12
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
∀x(v = z ∧ u = w)) |
| 79 | | nfa1-o 2166 |
. . . . . . . . . . . . 13
⊢ Ⅎx∀x(v = z ∧ u = w) |
| 80 | 71 | sps-o 2159 |
. . . . . . . . . . . . . 14
⊢ (∀x(v = z ∧ u = w) → (v
∈ u
↔ z ∈ w)) |
| 81 | 80 | imbi2d 307 |
. . . . . . . . . . . . 13
⊢ (∀x(v = z ∧ u = w) → ((x =
y → v ∈ u) ↔ (x =
y → z ∈ w))) |
| 82 | 79, 81 | albid 1772 |
. . . . . . . . . . . 12
⊢ (∀x(v = z ∧ u = w) → (∀x(x = y →
v ∈
u) ↔ ∀x(x = y →
z ∈
w))) |
| 83 | 78, 82 | syl 15 |
. . . . . . . . . . 11
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(∀x(x = y → v ∈ u) ↔
∀x(x = y → z ∈ w))) |
| 84 | 72, 83 | imbi12d 311 |
. . . . . . . . . 10
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
((v ∈
u → ∀x(x = y →
v ∈
u)) ↔ (z ∈ w → ∀x(x = y →
z ∈
w)))) |
| 85 | 68, 84 | mpbii 202 |
. . . . . . . . 9
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(z ∈
w → ∀x(x = y →
z ∈
w))) |
| 86 | 85 | exp32 588 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(v = z
→ (u = w → (z
∈ w
→ ∀x(x = y → z ∈ w))))) |
| 87 | 86 | exlimdv 1636 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(∃v
v = z
→ (u = w → (z
∈ w
→ ∀x(x = y → z ∈ w))))) |
| 88 | 66, 87 | mpi 16 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(u = w
→ (z ∈ w →
∀x(x = y → z ∈ w)))) |
| 89 | 88 | exlimdv 1636 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(∃u
u = w
→ (z ∈ w →
∀x(x = y → z ∈ w)))) |
| 90 | 65, 89 | mpi 16 |
. . . 4
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(z ∈
w → ∀x(x = y →
z ∈
w))) |
| 91 | 90 | a1d 22 |
. . 3
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(x = y
→ (z ∈ w →
∀x(x = y → z ∈ w)))) |
| 92 | 91 | a1d 22 |
. 2
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(¬ ∀x x = y → (x =
y → (z ∈ w → ∀x(x = y →
z ∈
w))))) |
| 93 | 29, 47, 64, 92 | 4cases 915 |
1
⊢ (¬ ∀x x = y →
(x = y
→ (z ∈ w →
∀x(x = y → z ∈ w)))) |