Proof of Theorem ax11inda
Step | Hyp | Ref
| Expression |
1 | | a9ev 1656 |
. . 3
⊢ ∃w w = y |
2 | | ax11inda.1 |
. . . . . . 7
⊢ (¬ ∀x x = w →
(x = w
→ (φ → ∀x(x = w →
φ)))) |
3 | 2 | ax11inda2 2199 |
. . . . . 6
⊢ (¬ ∀x x = w →
(x = w
→ (∀zφ →
∀x(x = w → ∀zφ)))) |
4 | | dveeq2-o 2184 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
(w = y
→ ∀x w = y)) |
5 | 4 | imp 418 |
. . . . . . . 8
⊢ ((¬ ∀x x = y ∧ w = y) → ∀x w = y) |
6 | | hba1-o 2149 |
. . . . . . . . . 10
⊢ (∀x w = y →
∀x∀x w = y) |
7 | | equequ2 1686 |
. . . . . . . . . . 11
⊢ (w = y →
(x = w
↔ x = y)) |
8 | 7 | sps-o 2159 |
. . . . . . . . . 10
⊢ (∀x w = y →
(x = w
↔ x = y)) |
9 | 6, 8 | albidh 1590 |
. . . . . . . . 9
⊢ (∀x w = y →
(∀x
x = w
↔ ∀x x = y)) |
10 | 9 | notbid 285 |
. . . . . . . 8
⊢ (∀x w = y →
(¬ ∀x x = w ↔ ¬ ∀x x = y)) |
11 | 5, 10 | syl 15 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ w = y) → (¬ ∀x x = w ↔
¬ ∀x x = y)) |
12 | 7 | adantl 452 |
. . . . . . . 8
⊢ ((¬ ∀x x = y ∧ w = y) → (x =
w ↔ x = y)) |
13 | 8 | imbi1d 308 |
. . . . . . . . . . 11
⊢ (∀x w = y →
((x = w
→ ∀zφ) ↔
(x = y
→ ∀zφ))) |
14 | 6, 13 | albidh 1590 |
. . . . . . . . . 10
⊢ (∀x w = y →
(∀x(x = w → ∀zφ) ↔ ∀x(x = y →
∀zφ))) |
15 | 5, 14 | syl 15 |
. . . . . . . . 9
⊢ ((¬ ∀x x = y ∧ w = y) → (∀x(x = w →
∀zφ) ↔ ∀x(x = y →
∀zφ))) |
16 | 15 | imbi2d 307 |
. . . . . . . 8
⊢ ((¬ ∀x x = y ∧ w = y) → ((∀zφ → ∀x(x = w →
∀zφ)) ↔ (∀zφ → ∀x(x = y →
∀zφ)))) |
17 | 12, 16 | imbi12d 311 |
. . . . . . 7
⊢ ((¬ ∀x x = y ∧ w = y) → ((x =
w → (∀zφ → ∀x(x = w →
∀zφ))) ↔ (x = y →
(∀zφ →
∀x(x = y → ∀zφ))))) |
18 | 11, 17 | imbi12d 311 |
. . . . . 6
⊢ ((¬ ∀x x = y ∧ w = y) → ((¬ ∀x x = w →
(x = w
→ (∀zφ →
∀x(x = w → ∀zφ)))) ↔ (¬ ∀x x = y →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ)))))) |
19 | 3, 18 | mpbii 202 |
. . . . 5
⊢ ((¬ ∀x x = y ∧ w = y) → (¬ ∀x x = y →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ))))) |
20 | 19 | ex 423 |
. . . 4
⊢ (¬ ∀x x = y →
(w = y
→ (¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ)))))) |
21 | 20 | exlimdv 1636 |
. . 3
⊢ (¬ ∀x x = y →
(∃w
w = y
→ (¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ)))))) |
22 | 1, 21 | mpi 16 |
. 2
⊢ (¬ ∀x x = y →
(¬ ∀x x = y → (x =
y → (∀zφ → ∀x(x = y →
∀zφ))))) |
23 | 22 | pm2.43i 43 |
1
⊢ (¬ ∀x x = y →
(x = y
→ (∀zφ →
∀x(x = y → ∀zφ)))) |