Step | Hyp | Ref
| Expression |
1 | | 19.26 1593 |
. . 3
⊢ (∀x(x = z ∧ x = w) ↔ (∀x x = z ∧ ∀x x = w)) |
2 | | equid 1676 |
. . . . . . . 8
⊢ x = x |
3 | 2 | a1i 10 |
. . . . . . 7
⊢ (x = y →
x = x) |
4 | 3 | ax-gen 1546 |
. . . . . 6
⊢ ∀x(x = y →
x = x) |
5 | 4 | a1i 10 |
. . . . 5
⊢ (x = x →
∀x(x = y → x =
x)) |
6 | | equequ1 1684 |
. . . . . . . . 9
⊢ (x = z →
(x = x
↔ z = x)) |
7 | | equequ2 1686 |
. . . . . . . . 9
⊢ (x = w →
(z = x
↔ z = w)) |
8 | 6, 7 | sylan9bb 680 |
. . . . . . . 8
⊢ ((x = z ∧ x = w) → (x =
x ↔ z = w)) |
9 | 8 | sps-o 2159 |
. . . . . . 7
⊢ (∀x(x = z ∧ x = w) → (x =
x ↔ z = w)) |
10 | | nfa1-o 2166 |
. . . . . . . 8
⊢ Ⅎx∀x(x = z ∧ x = w) |
11 | 9 | imbi2d 307 |
. . . . . . . 8
⊢ (∀x(x = z ∧ x = w) → ((x =
y → x = x) ↔
(x = y
→ z = w))) |
12 | 10, 11 | albid 1772 |
. . . . . . 7
⊢ (∀x(x = z ∧ x = w) → (∀x(x = y →
x = x)
↔ ∀x(x = y → z =
w))) |
13 | 9, 12 | imbi12d 311 |
. . . . . 6
⊢ (∀x(x = z ∧ x = w) → ((x =
x → ∀x(x = y →
x = x))
↔ (z = w → ∀x(x = y →
z = w)))) |
14 | 13 | adantr 451 |
. . . . 5
⊢ ((∀x(x = z ∧ x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((x =
x → ∀x(x = y →
x = x))
↔ (z = w → ∀x(x = y →
z = w)))) |
15 | 5, 14 | mpbii 202 |
. . . 4
⊢ ((∀x(x = z ∧ x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z =
w → ∀x(x = y →
z = w))) |
16 | 15 | exp32 588 |
. . 3
⊢ (∀x(x = z ∧ x = w) → (¬ ∀x x = y →
(x = y
→ (z = w → ∀x(x = y →
z = w))))) |
17 | 1, 16 | sylbir 204 |
. 2
⊢ ((∀x x = z ∧ ∀x x = w) → (¬ ∀x x = y →
(x = y
→ (z = w → ∀x(x = y →
z = w))))) |
18 | | equequ1 1684 |
. . . . . . 7
⊢ (x = y →
(x = w
↔ y = w)) |
19 | 18 | ad2antll 709 |
. . . . . 6
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (x =
w ↔ y = w)) |
20 | | ax12o 1934 |
. . . . . . . . 9
⊢ (¬ ∀x x = y →
(¬ ∀x x = w → (y =
w → ∀x y = w))) |
21 | 20 | impcom 419 |
. . . . . . . 8
⊢ ((¬ ∀x x = w ∧ ¬ ∀x x = y) →
(y = w
→ ∀x y = w)) |
22 | 21 | adantrr 697 |
. . . . . . 7
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (y =
w → ∀x y = w)) |
23 | | equtrr 1683 |
. . . . . . . 8
⊢ (y = w →
(x = y
→ x = w)) |
24 | 23 | alimi 1559 |
. . . . . . 7
⊢ (∀x y = w →
∀x(x = y → x =
w)) |
25 | 22, 24 | syl6 29 |
. . . . . 6
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (y =
w → ∀x(x = y →
x = w))) |
26 | 19, 25 | sylbid 206 |
. . . . 5
⊢ ((¬ ∀x x = w ∧ (¬ ∀x x = y ∧ x = y)) → (x =
w → ∀x(x = y →
x = w))) |
27 | 26 | adantll 694 |
. . . 4
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (x =
w → ∀x(x = y →
x = w))) |
28 | | equequ1 1684 |
. . . . . . 7
⊢ (x = z →
(x = w
↔ z = w)) |
29 | 28 | sps-o 2159 |
. . . . . 6
⊢ (∀x x = z →
(x = w
↔ z = w)) |
30 | 29 | imbi2d 307 |
. . . . . . 7
⊢ (∀x x = z →
((x = y
→ x = w) ↔ (x =
y → z = w))) |
31 | 30 | dral2-o 2181 |
. . . . . 6
⊢ (∀x x = z →
(∀x(x = y → x =
w) ↔ ∀x(x = y →
z = w))) |
32 | 29, 31 | imbi12d 311 |
. . . . 5
⊢ (∀x x = z →
((x = w
→ ∀x(x = y → x =
w)) ↔ (z = w →
∀x(x = y → z =
w)))) |
33 | 32 | ad2antrr 706 |
. . . 4
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((x =
w → ∀x(x = y →
x = w))
↔ (z = w → ∀x(x = y →
z = w)))) |
34 | 27, 33 | mpbid 201 |
. . 3
⊢ (((∀x x = z ∧ ¬ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z =
w → ∀x(x = y →
z = w))) |
35 | 34 | exp32 588 |
. 2
⊢ ((∀x x = z ∧ ¬ ∀x x = w) →
(¬ ∀x x = y → (x =
y → (z = w →
∀x(x = y → z =
w))))) |
36 | | equequ2 1686 |
. . . . . . 7
⊢ (x = y →
(z = x
↔ z = y)) |
37 | 36 | ad2antll 709 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z =
x ↔ z = y)) |
38 | | ax12o 1934 |
. . . . . . . . 9
⊢ (¬ ∀x x = z →
(¬ ∀x x = y → (z =
y → ∀x z = y))) |
39 | 38 | imp 418 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = y) →
(z = y
→ ∀x z = y)) |
40 | 39 | adantrr 697 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z =
y → ∀x z = y)) |
41 | 36 | biimprcd 216 |
. . . . . . . 8
⊢ (z = y →
(x = y
→ z = x)) |
42 | 41 | alimi 1559 |
. . . . . . 7
⊢ (∀x z = y →
∀x(x = y → z =
x)) |
43 | 40, 42 | syl6 29 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z =
y → ∀x(x = y →
z = x))) |
44 | 37, 43 | sylbid 206 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ (¬ ∀x x = y ∧ x = y)) → (z =
x → ∀x(x = y →
z = x))) |
45 | 44 | adantlr 695 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z =
x → ∀x(x = y →
z = x))) |
46 | 7 | sps-o 2159 |
. . . . . 6
⊢ (∀x x = w →
(z = x
↔ z = w)) |
47 | 46 | imbi2d 307 |
. . . . . . 7
⊢ (∀x x = w →
((x = y
→ z = x) ↔ (x =
y → z = w))) |
48 | 47 | dral2-o 2181 |
. . . . . 6
⊢ (∀x x = w →
(∀x(x = y → z =
x) ↔ ∀x(x = y →
z = w))) |
49 | 46, 48 | imbi12d 311 |
. . . . 5
⊢ (∀x x = w →
((z = x
→ ∀x(x = y → z =
x)) ↔ (z = w →
∀x(x = y → z =
w)))) |
50 | 49 | ad2antlr 707 |
. . . 4
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → ((z =
x → ∀x(x = y →
z = x))
↔ (z = w → ∀x(x = y →
z = w)))) |
51 | 45, 50 | mpbid 201 |
. . 3
⊢ (((¬ ∀x x = z ∧ ∀x x = w) ∧ (¬ ∀x x = y ∧ x = y)) → (z =
w → ∀x(x = y →
z = w))) |
52 | 51 | exp32 588 |
. 2
⊢ ((¬ ∀x x = z ∧ ∀x x = w) → (¬ ∀x x = y →
(x = y
→ (z = w → ∀x(x = y →
z = w))))) |
53 | | a9ev 1656 |
. . . . 5
⊢ ∃u u = w |
54 | | a9ev 1656 |
. . . . . . 7
⊢ ∃v v = z |
55 | | ax-1 6 |
. . . . . . . . . . 11
⊢ (v = u →
(x = y
→ v = u)) |
56 | 55 | alrimiv 1631 |
. . . . . . . . . 10
⊢ (v = u →
∀x(x = y → v =
u)) |
57 | | equequ1 1684 |
. . . . . . . . . . . . 13
⊢ (v = z →
(v = u
↔ z = u)) |
58 | | equequ2 1686 |
. . . . . . . . . . . . 13
⊢ (u = w →
(z = u
↔ z = w)) |
59 | 57, 58 | sylan9bb 680 |
. . . . . . . . . . . 12
⊢ ((v = z ∧ u = w) → (v =
u ↔ z = w)) |
60 | 59 | adantl 452 |
. . . . . . . . . . 11
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(v = u
↔ z = w)) |
61 | | dveeq2-o 2184 |
. . . . . . . . . . . . . . 15
⊢ (¬ ∀x x = z →
(v = z
→ ∀x v = z)) |
62 | | dveeq2-o 2184 |
. . . . . . . . . . . . . . 15
⊢ (¬ ∀x x = w →
(u = w
→ ∀x u = w)) |
63 | 61, 62 | im2anan9 808 |
. . . . . . . . . . . . . 14
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
((v = z
∧ u =
w) → (∀x v = z ∧ ∀x u = w))) |
64 | 63 | imp 418 |
. . . . . . . . . . . . 13
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(∀x
v = z
∧ ∀x u = w)) |
65 | | 19.26 1593 |
. . . . . . . . . . . . 13
⊢ (∀x(v = z ∧ u = w) ↔ (∀x v = z ∧ ∀x u = w)) |
66 | 64, 65 | sylibr 203 |
. . . . . . . . . . . 12
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
∀x(v = z ∧ u = w)) |
67 | | nfa1-o 2166 |
. . . . . . . . . . . . 13
⊢ Ⅎx∀x(v = z ∧ u = w) |
68 | 59 | sps-o 2159 |
. . . . . . . . . . . . . 14
⊢ (∀x(v = z ∧ u = w) → (v =
u ↔ z = w)) |
69 | 68 | imbi2d 307 |
. . . . . . . . . . . . 13
⊢ (∀x(v = z ∧ u = w) → ((x =
y → v = u) ↔
(x = y
→ z = w))) |
70 | 67, 69 | albid 1772 |
. . . . . . . . . . . 12
⊢ (∀x(v = z ∧ u = w) → (∀x(x = y →
v = u)
↔ ∀x(x = y → z =
w))) |
71 | 66, 70 | syl 15 |
. . . . . . . . . . 11
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(∀x(x = y → v =
u) ↔ ∀x(x = y →
z = w))) |
72 | 60, 71 | imbi12d 311 |
. . . . . . . . . 10
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
((v = u
→ ∀x(x = y → v =
u)) ↔ (z = w →
∀x(x = y → z =
w)))) |
73 | 56, 72 | mpbii 202 |
. . . . . . . . 9
⊢ (((¬ ∀x x = z ∧ ¬ ∀x x = w) ∧ (v = z ∧ u = w)) →
(z = w
→ ∀x(x = y → z =
w))) |
74 | 73 | exp32 588 |
. . . . . . . 8
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(v = z
→ (u = w → (z =
w → ∀x(x = y →
z = w))))) |
75 | 74 | exlimdv 1636 |
. . . . . . 7
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(∃v
v = z
→ (u = w → (z =
w → ∀x(x = y →
z = w))))) |
76 | 54, 75 | mpi 16 |
. . . . . 6
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(u = w
→ (z = w → ∀x(x = y →
z = w)))) |
77 | 76 | exlimdv 1636 |
. . . . 5
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(∃u
u = w
→ (z = w → ∀x(x = y →
z = w)))) |
78 | 53, 77 | mpi 16 |
. . . 4
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(z = w
→ ∀x(x = y → z =
w))) |
79 | 78 | a1d 22 |
. . 3
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(x = y
→ (z = w → ∀x(x = y →
z = w)))) |
80 | 79 | a1d 22 |
. 2
⊢ ((¬ ∀x x = z ∧ ¬ ∀x x = w) →
(¬ ∀x x = y → (x =
y → (z = w →
∀x(x = y → z =
w))))) |
81 | 17, 35, 52, 80 | 4cases 915 |
1
⊢ (¬ ∀x x = y →
(x = y
→ (z = w → ∀x(x = y →
z = w)))) |