NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  stdpc5OLD GIF version

Theorem stdpc5OLD 1799
Description: Obsolete proof of stdpc5 1798 as of 1-Jan-2018. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
stdpc5.1 xφ
Assertion
Ref Expression
stdpc5OLD (x(φψ) → (φxψ))

Proof of Theorem stdpc5OLD
StepHypRef Expression
1 stdpc5.1 . . 3 xφ
21nfri 1762 . 2 (φxφ)
3 alim 1558 . 2 (x(φψ) → (xφxψ))
42, 3syl5 28 1 (x(φψ) → (φxψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wnf 1544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator