NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl13anc GIF version

Theorem syl13anc 1184
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (φψ)
sylXanc.2 (φχ)
sylXanc.3 (φθ)
sylXanc.4 (φτ)
syl13anc.5 ((ψ (χ θ τ)) → η)
Assertion
Ref Expression
syl13anc (φη)

Proof of Theorem syl13anc
StepHypRef Expression
1 sylXanc.1 . 2 (φψ)
2 sylXanc.2 . . 3 (φχ)
3 sylXanc.3 . . 3 (φθ)
4 sylXanc.4 . . 3 (φτ)
52, 3, 43jca 1132 . 2 (φ → (χ θ τ))
6 syl13anc.5 . 2 ((ψ (χ θ τ)) → η)
71, 5, 6syl2anc 642 1 (φη)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  syl23anc  1189  syl33anc  1197  pm2.61da3ne  2597  sbthlem3  6206
  Copyright terms: Public domain W3C validator