New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl22anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (φ → ψ) |
sylXanc.2 | ⊢ (φ → χ) |
sylXanc.3 | ⊢ (φ → θ) |
sylXanc.4 | ⊢ (φ → τ) |
syl22anc.5 | ⊢ (((ψ ∧ χ) ∧ (θ ∧ τ)) → η) |
Ref | Expression |
---|---|
syl22anc | ⊢ (φ → η) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . . 3 ⊢ (φ → ψ) | |
2 | sylXanc.2 | . . 3 ⊢ (φ → χ) | |
3 | 1, 2 | jca 518 | . 2 ⊢ (φ → (ψ ∧ χ)) |
4 | sylXanc.3 | . 2 ⊢ (φ → θ) | |
5 | sylXanc.4 | . 2 ⊢ (φ → τ) | |
6 | syl22anc.5 | . 2 ⊢ (((ψ ∧ χ) ∧ (θ ∧ τ)) → η) | |
7 | 3, 4, 5, 6 | syl12anc 1180 | 1 ⊢ (φ → η) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: prepeano4 4452 preaddccan2 4456 ncfindi 4476 ncfinsn 4477 ncfineleq 4478 nnpw1ex 4485 tfin11 4494 tfinpw1 4495 ncfintfin 4496 tfindi 4497 tfinsuc 4499 evenodddisj 4517 sfin112 4530 vfintle 4547 vfinspsslem1 4551 vfinncsp 4555 enadj 6061 ncdisjun 6137 nntccl 6171 ceclnn1 6190 sbth 6207 tcncg 6225 cet 6235 spacis 6289 nchoicelem6 6295 |
Copyright terms: Public domain | W3C validator |