NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl22anc GIF version

Theorem syl22anc 1183
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (φψ)
sylXanc.2 (φχ)
sylXanc.3 (φθ)
sylXanc.4 (φτ)
syl22anc.5 (((ψ χ) (θ τ)) → η)
Assertion
Ref Expression
syl22anc (φη)

Proof of Theorem syl22anc
StepHypRef Expression
1 sylXanc.1 . . 3 (φψ)
2 sylXanc.2 . . 3 (φχ)
31, 2jca 518 . 2 (φ → (ψ χ))
4 sylXanc.3 . 2 (φθ)
5 sylXanc.4 . 2 (φτ)
6 syl22anc.5 . 2 (((ψ χ) (θ τ)) → η)
73, 4, 5, 6syl12anc 1180 1 (φη)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  prepeano4  4452  preaddccan2  4456  ncfindi  4476  ncfinsn  4477  ncfineleq  4478  nnpw1ex  4485  tfin11  4494  tfinpw1  4495  ncfintfin  4496  tfindi  4497  tfinsuc  4499  evenodddisj  4517  sfin112  4530  vfintle  4547  vfinspsslem1  4551  vfinncsp  4555  enadj  6061  ncdisjun  6137  nntccl  6171  ceclnn1  6190  sbth  6207  tcncg  6225  cet  6235  spacis  6289  nchoicelem6  6295
  Copyright terms: Public domain W3C validator